|
ORF cDNA clones
|
CRISPR / TALEN
|
Lentivirus
|
AAV
|
TALE-TF
|
ORF knockin clones
|
|
Antibody
|
Proteins
|
miRNA target clones
|
qPCR primers
|
shRNA clones
|
miRNA products
|
Promoter clones
|
Validated All-in-One™ qPCR Primer for PRKAR2A(NM_004157.3) Search again
By default, qPCR primer pairs are designed to measure the expression level of the splice variant (accession number) you selected for this gene WITHOUT consideration of other possible variants of this gene. If this gene has multiple variants, and you would like to measure the expression levels of one particular variant, multiple variants, or all variants, please contact us for a custom service project at inquiry@genecopoeia.com.
Validated result:
Summary
cAMP is a signaling molecule important for a variety of cellular functions. cAMP exerts its effects by activating the cAMP-dependent protein kinase, which transduces the signal through phosphorylation of different target proteins. The inactive kinase holoenzyme is a tetramer composed of two regulatory and two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits. Four different regulatory subunits and three catalytic subunits have been identified in humans. The protein encoded by this gene is one of the regulatory subunits. This subunit can be phosphorylated by the activated catalytic subunit. It may interact with various A-kinase anchoring proteins and determine the subcellular localization of cAMP-dependent protein kinase. This subunit has been shown to regulate protein transport from endosomes to the Golgi apparatus and further to the endoplasmic reticulum (ER).
Gene References into function
- findings indicate that increased particulate type II protein kinase A activity occurs throughout pregnancy therefore directing the cAMP quiescence signal to specific subcellular loci within myometrial smooth muscle cells
- switching of PKA isozyme can cause tumor cells to undergo phenotypic reversion of the malignancy [revoew]
- These data implicate the involvement of PKA-RIIalpha anchoring apical targeting of distinct proteins and glycosphingolipids to apical plasma membrane domains and suggest that rerouting may underlie the delayed Golgi-to-apical surface transport of MDR1.
- The high-resolution crystal structures of the docking and dimerization (D/D) domain of the RIIalpha regulatory subunit of PKA in complex with the high-affinity anchoring peptide AKAP-IS explain the molecular basis for AKAP-regulatory subunit recognition.
- The data suggest that centrosomal anchoring of RIIalpha and the interrelated subapical positioning of these centrosomes is required for oncostatin M-, but not cAMP-mediated, bile canalicular lumen development.
- RIIalpha releases Calpha upon elevated cAMP alone, dependent on autophosphorylation of the RIIalpha inhibitory domain
