|
ORF cDNA clones
|
CRISPR / TALEN
|
Lentivirus
|
AAV
|
TALE-TF
|
ORF knockin clones
|
|
Antibody
|
Proteins
|
miRNA target clones
|
qPCR primers
|
shRNA clones
|
miRNA products
|
Promoter clones
|
Validated All-in-One™ qPCR Primer for DUSP4(NM_001394.6) Search again
By default, qPCR primer pairs are designed to measure the expression level of the splice variant (accession number) you selected for this gene WITHOUT consideration of other possible variants of this gene. If this gene has multiple variants, and you would like to measure the expression levels of one particular variant, multiple variants, or all variants, please contact us for a custom service project at inquiry@genecopoeia.com.
Validated result:
Summary
The protein encoded by this gene is a member of the dual specificity protein phosphatase subfamily. These phosphatases inactivate their target kinases by dephosphorylating both the phosphoserine/threonine and phosphotyrosine residues. They negatively regulate members of the mitogen-activated protein (MAP) kinase superfamily (MAPK/ERK, SAPK/JNK, p38), which are associated with cellular proliferation and differentiation. Different members of the family of dual specificity phosphatases show distinct substrate specificities for various MAP kinases, different tissue distribution and subcellular localization, and different modes of inducibility of their expression by extracellular stimuli. This gene product inactivates ERK1, ERK2 and JNK, is expressed in a variety of tissues, and is localized in the nucleus. Two alternatively spliced transcript variants, encoding distinct isoforms, have been observed for this gene. In addition, multiple polyadenylation sites have been reported. [provided by RefSeq].
Gene References into function
- Results demonstrate the in vivo specificity of MKP-2 for JNK and not ERK and show that nuclear-targeted JNK is involved in genotoxic stress-induced apoptosis.
- MKP2-mediated inactivation of nuclear extracellular signal-regulated protein kinase ERK2 represents a key event in the establishment of replicative cell senescence.
- E2F-1 is a transcriptional activator of MKP-2 and MKP-2 is an essential cell death mediator in the E2F-1 pathway
- a novel, stimulus-specific, and phosphatase-specific mechanism of ERK2 regulation in the nucleus by DUSP1, -2, and -4.
