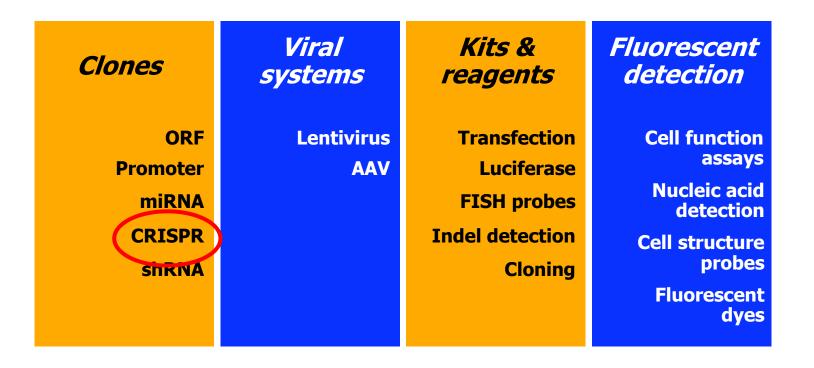


GeneCopoeia CRISPR Genome Editing Technology


Presenter:

January 25, 2017

Ed Davis, Ph.D. Senior Application Scientist GeneCopoeia, Inc.

GeneCopoeia products & services

Functional Genomics & Cell Biology

Outline

- Genome editing: Technologies
- Applications for genome editing
- How GeneCopoeia can help you with genome editing

Outline

Genome editing: Technologies

Applications for genome editing

How GeneCopoeia can help you with genome editing

CRISPR or RNAi?

Knock down vs. Knock out

Method	Change expression level	Knock down	Knock out	Change genetic code
CRISPR	\checkmark		\checkmark	\checkmark
RNAi	\checkmark	\checkmark		

Other techniques of gene manipulation

GeneCopoeia Technical Note: Knockdown vs. Knockout

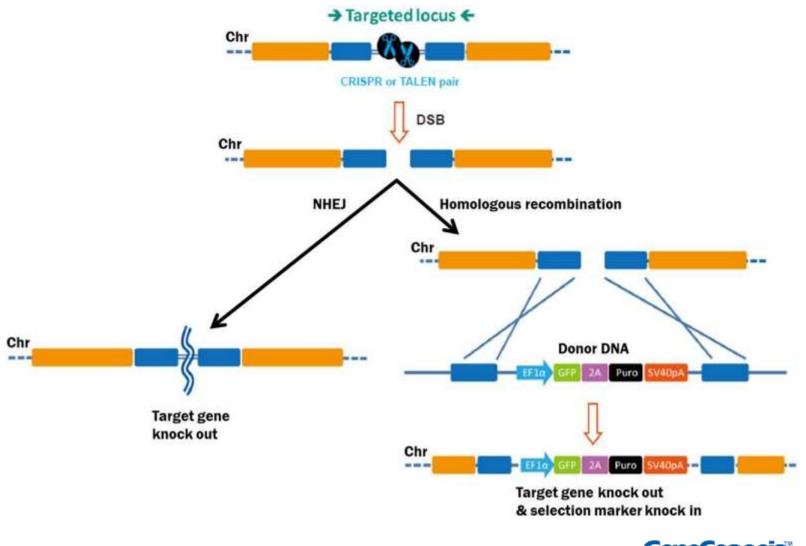
TECHNICAL NOTE

Knockout by TALEN or CRISPR vs. Knockdown by shRNA or siRNA

Ed Davis, Ph.D.

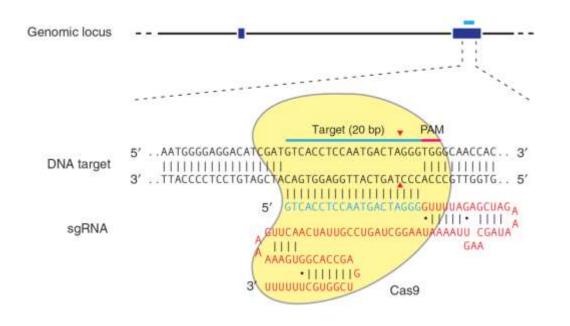
Recent advances in technologies for genome editing-the use of TALEN or CRISPR to make targeted, permanent changes to genes-have revolutionized molecular genetics. They have also presented users with a choice between these relatively new technologies and that of the more established method of RNA interference (RNAi)-mediated knockdown using short hairpin RNA (shRNA) or short interfering RNA (siRNA). In this Technical Note, we explore the differences between the two methods for ablating gene function, and situations where one technology is more appropriate than the other.

RNAi-mediated gene silencing


In higher eukaryotes, RNAi-mediated knockdown is the most common strategy for depleting cells of a gene product of interest. However, RNAi usually does not completely shut off the gene. Essentially, short (approximately 20-25 nucleotides) double stranded RNA molecules are either generated from hairpin-forming precursors (shRNAs) or introduced exogenously (siRNAs). After processing by Dicer, a circle stranded RNA has pairs with a target mRNA (Katting 2012). Depending on the organism. RNAi

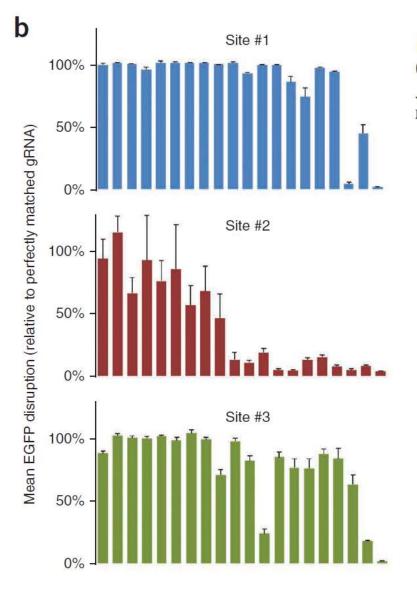
Download from:

http://www.genecopoeia.com/wp-content/uploads/2014/02/Technotes_Knockdown_vs_knockout.pdf


Targeted DNA editing by DSB induction

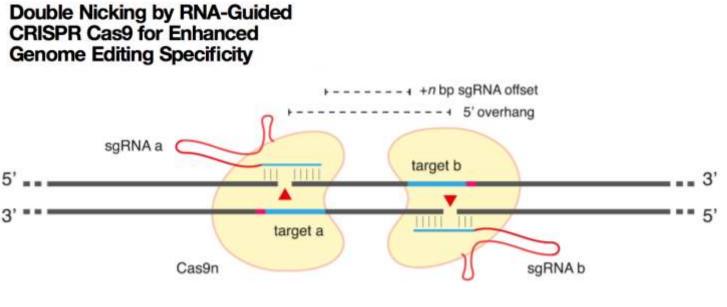
Expressway to Discovery

CRISPR genome editing technology


CRISPR-Cas9: RNA-guided endonuclease

Ran, et al. (2013). Nature Protocols 8, 2281

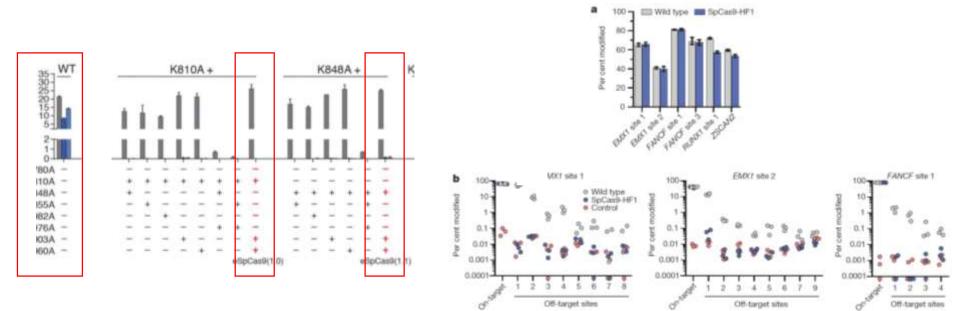
- 20 nt single guide RNA (sgRNA) guides Cas9 nuclease to target site.
- Requires NGG "PAM" site immediately downstream of sgRNA target sequence.
- Cas9-RNA complex makes DSB 3-4 nt upstream of PAM.
- Target almost any gene in any cell


High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells

Yanfang Fu¹⁻⁴, Jennifer A Foden¹⁻³, Cyd Khayter¹⁻³, Morgan L Maeder^{1-3,5}, Deepak Reyon¹⁻⁴, J Keith Joung¹⁻⁵ & Jeffry D Sander¹⁻⁴

- Showed that some sgRNAs with single, double, and even up to 5 transversion mismatches could still direct Cas9 to mutate EGFP.
- Found that for 4 of 6 tested sgRNAs, evidence of off-target mutagenesis (5.6% -125% of the intended targets).

Fu, et al. (2013). Nature Biotech. 21, 822



Ran, et al. (2013). Cell 154, 1380

- Cas9 D10A "nickase" mutant creates single-strand nicks instead of DSBs
- > Off-target nicks repaired by high-fidelity base excision repair
- Permits ability to generate dimer-like chimeric endonuclease, similar to TALEN. 2 nicks will create a DSB
- > Dramatically (50x-1,500x) reduces incidence of off-target effects

Cas9 point mutants

Slaymaker, et al. (2015). Science

Kleinstiver, et al. (2016). Nature 529, 490

GeneCopoeia Technical Note: CRISPR specificity

TECHNICAL NOTE

CRISPR-Cas9 Specificity: Taming Off-target Mutagenesis

Ed Davis, Ph.D.

Abstract

Genome Editing-the ability to make specific changes at targeted genomic sites in complex organisms-is of fundamental importance in biology and medicine (Bogdanove & Voytas, 2011; van der Oost, *et al.*, 2013). Recently, the CRISPR (Clustered, Regularly Interspaced, Short Palindromic Repeats)-Cas (CRISPR-associated) system has become popular for applications such as gene knockouts, making precise, defined base changes, and for transgenesis, to name a few. The ease of design, high efficiency, and relatively low cost of CRISPR-Cas offers promise for use of this tool for correcting mutations that cause genetic diseases, and to replace older methods that cause undesired consequences of random transgene integration. However, CRISPR-Cas itself has some propensity for causing off-target mutagenesis. Despite recent improvements in the technology, some researchers believe that CRISPR-Cas has a relatively low degree of specificity. In this Technical Note, we discuss the mechanism of CRISPR-Cas in its application for genome editing and how it affects specificity, reports in the literature discussing

Download from:

http://www.genecopoeia.com/wp-content/uploads/2014/04/Technotes_Specificity.pdf

Outline

Genome editing: Technologies

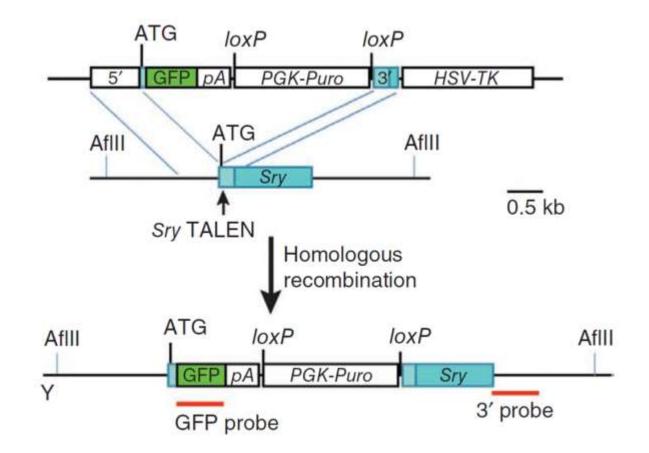
Applications for genome editing

How GeneCopoeia can help you with genome editing

Application	Example	Technology	Reference
Gene knockout	Knockout SRY, UTY genes in cultured dells	TALEN via NHEJ and plasmid donor	Wang, et al. (2013). Nature Biotech. 31, 530
Gene knockout	Knockout of tet genes in transgenic rats	CRISPR via NHEJ	Li, et al. (2013). Nature Biotech. 8, 684
Correction of disease mutations	Cured heritable cataracts in transgenic mice	CRISPR via oligonucleotide donor	Wu, et al. (2013). Cell Stem Cell 13, 659
Engineered disease resistance	Knockout CCR5 gene to cure patients of HIV	ZFN via NHEJ	Perez, et al. (2008). Nat Biotech 26, 808
Forward mutagenesis screens	Identified genes in mismatch repair pathway by selecting for 6- thioguanosine resistance	CRISPR via NHEJ	Wang, et al. (2014). Science 343, 80
In-frame fusion tagging	C-terminal tag Sox2p with V5	CRISPR via oligonucleotide donor	Yang, et al. (2013). Cell 154, 1370
Transgene knock-in	Sox2, Oct4 ORFs KI into human AAVS1 "Safe Harbor"	TALEN via plasmid donor	GeneCopoeia internal data

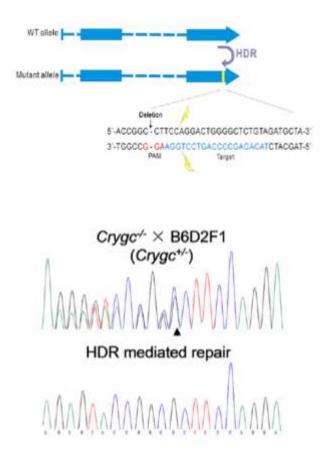
Knockout via NHEJ

Clone 1

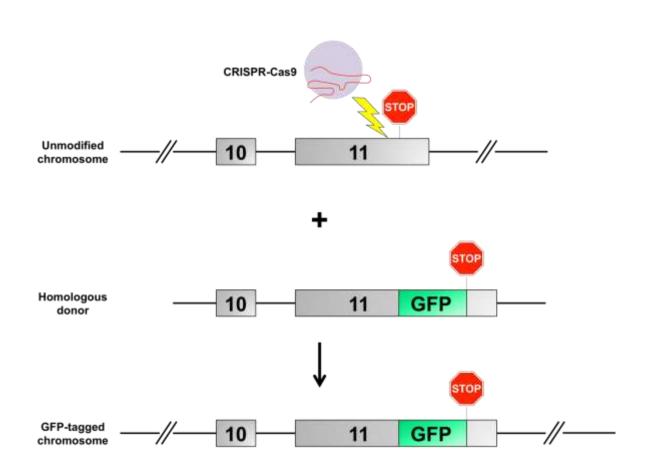

	(500)	500 510	520	530	540	550	560	570	580	590	600	610	620	635
HDAC6 Targeting region NC 018934	C2-4_PREMIX (471)	TICACAGAAGCGAA	TATTAAAAAG	YLACCORTICS	COLSC TETATOC	CAL TAC	AGGCCTCCTCC	GAGOGGATGT	ACCCCGAGGA	KCGGDGCOO	CAGSTAAAD	AAGAAAGGCAI	MATGAAGAAGE	TOGGOCAA
Allele a	C2-6_PREMIX (470)	TTCACAGAAGCGAA	TATTAAAAG									AAGAAAGGCAJ	ARTGANGANCO	TOGGECAA
Allele b	C2-11_PREMIX (469)	TTCACAGAAGCGAM	TATTAAAAAG	SCAGCCGTTC/	Nii	*******				********	RAAG	AAGAAAGGCAI	MATGAAGAAGC	TOGGCCAA
Allele c	C2-7_PREMIX (472)	TTCACAGAAGCGAA	TATTAAAAAG	GAGOCUTTO	CONCEPTION	CRATS				{	GAGGTAAAG	AAGAAAGGCAI	AATGAAGAAGE	TOGGOCAN
Allele c	2A-F_PREMIX (470)	TTCACINGAAGCGAA	TATTABAAAG	GAGCCGTTC	DCCGCTCTATOC	CCANTS					GAGGTNAAG	AAGAAAGGCAJ	MATGAAGAAGC	TOGGOCAA
Allele d	C2-5_PREMIX (470)	TICACAGAAACCGAA	TATTAAAAAG	SAGCOFTO	DODGCT/CTATOO	OCAMP: TAG	G		*********		ANTIARAD	AAGAAAGGCAJ	MATGAAGAACE	TOGGOCAA
Allele d	C2-8_PREMIX (474)	TICACNEAAGCEAA	TATTAAAAAG	XMOCOGTIC	DOCECTCIVITCO	COMPCEME	G	********		<mark>(/(</mark>	GROCTADAG	ANGAAAGGCAI	MATGAAGAAGC	TOGGOCAA
Allele d	2B-F_PREMIX (472)	TTCACAGAAGCGAA	TATTAAAAAG	GAGOCGTEC	DOCOCTUTATOO	CCAAPCTAG	G				GAGGTAAAG	AAGAAAGGEAI	AATGAAGAAGC	TOGGOCAA
Allele d	2C-F_PREMIX (470)		TATTABAAAG	GAGCCETTC	DOCECTOTATOO	CCAATITAG	G				SAGGTAAAG	ABGAAAGGCAI	MATGAAGAAGC	TOSSOCAA
Allele e H	AC6 Targeting Region NC_018934 (500)	ITCACAGAAGCGAA	TATTAAAAAG	GAGOOGTIC	DCCGCTCTATCC	OCAATCENG	C			(CAGGTAAAA	ARGAAAGGCAI	MATGAAGAAGC	TOGGOCAR
Consensus	Consensus (500)	TICACAGAAGCGAA	TATTAAAAAGO	SEAGCOGTIC	CCCGCTCTATCC	CCAATCTAG				CO	GAGGTAAAG	AAGAAAGOCAJ	AATGAAGAAGC	TOGGOCAA

Clone 2

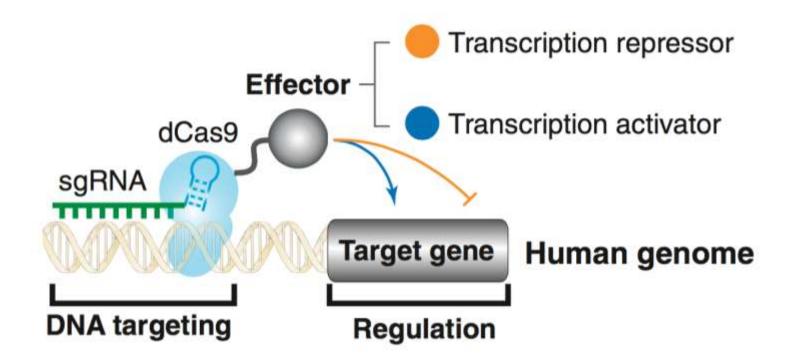
	(553)	553 560	570	580	590	600	610	620	630	640	650	660	670	688
HDAC6 Targeting region NC 018934	C3-11_PREMIX (487)	TANANGGACC	CET COCE	CTATOCOCAN	PCTAGAGGCCT	TCCTCCGAGC	GGATGTACECO	GAGGACGGCG	CCCCGGAGGT	M GUI <mark>G</mark> IUI	GCAMATG	AGMOCTC	GCCAAGCAATG	GAAGAAG <mark>RCETTA</mark>
Allele f	C3-8_PREMIX (516)	SCATTAATGAAT	COGCCAAC	GCCGGGAGAGA	CGGTTTG	C	STATIGGGCGC	CTTOCGCTT	CCTCGCTCACT	GACICCCCIG	IC <mark>OCTOSS</mark> ICS	TTCG CTG	C <mark>GCCGNOC</mark> GG <mark>T</mark> A	ICACTCNCTCA
Allele g	C3-6_PREMIX (487)	TANAANGGAGO	CETTOCOC				*********			ANGAAGAAA	G <mark>CCAMAT</mark> G/	AGAANCT C	GOCHATCAATG	GANGAAG <mark>ACUTA</mark>
Allele g	3C-F_PREMIX (487)	TAAAAAGGAGA	26772020 <mark>0</mark>							A <mark>A</mark> TAA <mark>C</mark> AAA	G <mark>SC</mark> AAAA <mark>T</mark> GA	ASAAGCTO	OCAAOCAATG	GAAGAAG <mark>AC</mark> CT <mark>A</mark>
Allele h	C3-10_PREMIX (487)	TRAAAAGGAGAGG	<mark>og nacio</mark> cia	CIATCCGC					GGAGGT	A <mark>A</mark> GAA <mark>G</mark> AAA	(<mark>GC</mark> NANA <mark>D</mark> GZ	NGAAG <mark>CT</mark> O	S <mark>GCCAAGC</mark> AA <mark>T</mark> G	CAAGAAG <mark>ACCTA</mark>
Allele i	3A-F_PREMIX (487)	TAAAAATCIGACCO	CGT IQ COD						A	А <mark>А</mark> ГАЛ <mark>С</mark> ААА	ICICORNAATICE	AGAAG <mark>CT</mark> C	GOGAAQCAATO	AN-ANNACCIA
Allele i	3B-F_PREMIX (492)	TRARAGOGAGO	CETTEC CEC						h	A <mark>A</mark> FAA <mark>G</mark> AAA	G <mark>əcinnat</mark> ici	ASAMCTO	GCCAACCAATG	GAAGAAG <mark>ACCTA</mark>
Allele i	C3-4_PREMIX (488)	TAARAAGODACO	GET OCCUP						1	A <mark>A</mark> GAA <mark>G</mark> AAA	G <mark>SCAAAA</mark> TS7	AGAAG <mark>CT</mark> C	G <mark>gggaagcart</mark> g	GAAGAAG <mark>AC</mark> CT <mark>A</mark>
Allele i	C3-5_PREMIX (487)	TAAAAAGGAGG								A <mark>A</mark> GAA <mark>G</mark> AAA	G <mark>OC</mark> ANA <mark>T</mark> GZ	ACANOCTCI	IGCENACEART C	GAAGRAG <mark>ACCTA</mark>
Allele i	C3-9_PREMIX (488)	INAAAAGGAGG	CGTTQC CQS.						/	A <mark>A</mark> GAA <mark>G</mark> AAA	G <mark>SCRAMA</mark> GI	IAAAAO <mark>C1</mark> O	S <mark>GOOGROCAA</mark> IG	GAAGAAG <mark>AC</mark> UI <mark>A</mark>
Allele iHDAC6 Targeti	ng Region NC_018934 (518)	TAAAAAGGEAOC	an an an	CIATOCOCAA	ICTAG				CGGAGGT	MEAN GAAA	G <mark>BCANAT</mark> GA	A ANGCIC	FOCHACKANTE	GAAGAAG <mark>ACCTA</mark>
Consensus	Consensus (553)	TAAAAAGGGAGC	CGTTOCCOGG	37					A	AAGAAGAAA	GGERARATGI	MAAGCTO	GCCAAGCAATG	GAAGAAGACCTA


Knockout via HDR: Donor plasmid

Wang, et al. (2013). Nature Biotech. 31, 530

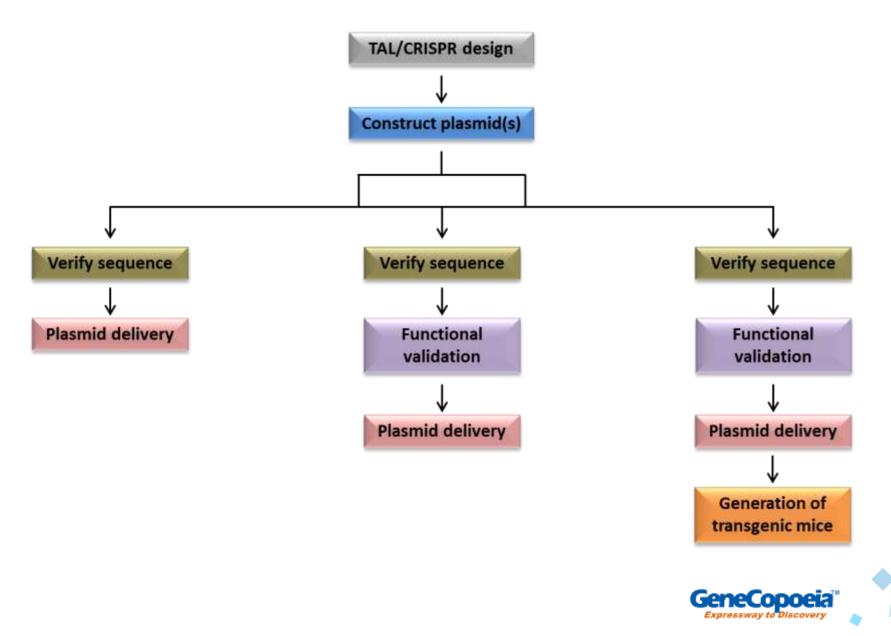

Mutagenesis via HDR: Oligo donor

- Use single strand oligonucleotide (ssODN) to introduce base changes or small deletions.
- Use for mutagenesis or disease correction.
- Wu, et al.: Used CRISPR + ssODN to cure heritable cataract disease in mice

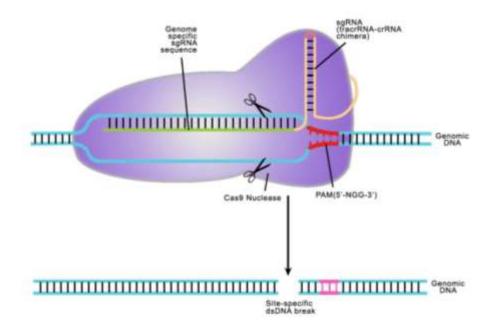


In-frame fusion tagging

Targeted gene activation/repression

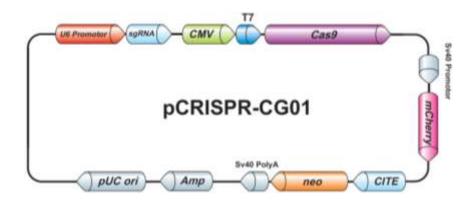

Outline

Genome editing: Technologies

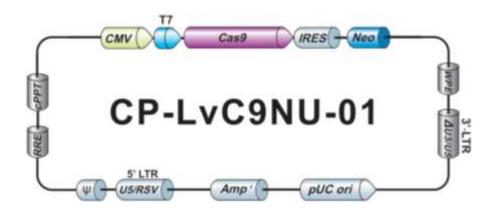

Applications for genome editing

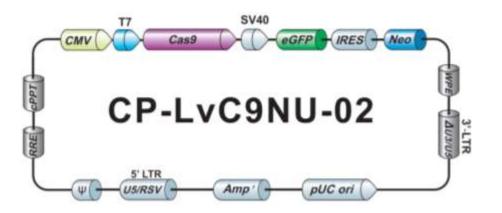
How GeneCopoeia can help you with genome editing

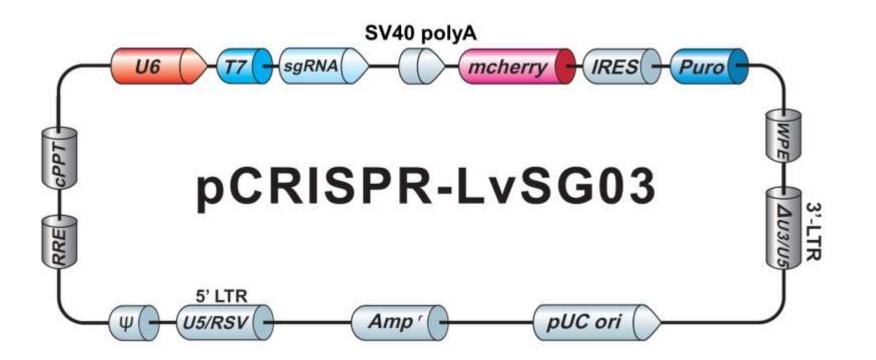
Custom CRISPR design & construction


Features

- Have nuclease (Cas9), activation (CRISPR-a) and repression (CRISPRi) systems
- Expert target design
- Plasmid construction process of the highest quality
- Quick turnaround time
- Advanced-level technical support


sgRNA plasmid design & construction


 Cas9 + sgRNA "All-in-one" plasmid


"Dual-use" lentiviral clones

"Dual-use" lentiviral clones

GeneCopoeia sgRNA libraries

Pathway & gene group sgRNA libraries

Library name	Number of genes				
Innate kinases & ubiquitin ligases	239				
Nuclear hormone receptors	118				
Tumor metastasis genes	57				
Oncogenes	288				
Tumor suppressor genes	231				
Protein kinases	658				
Key genes in 50 pathways	139				
Custom	Made-to-order				

Available as bacteria, DNA, or lentiviral particles either:

- A. Pooled
- **B.** Individually arrayed

GeneCopoeia sgRNA libraries

Advantages

- Individually constructed and cultured in *E. coli* before pooling. Makes possible use in pools or as individual sgRNAs.
- Pools limited to 150 sgRNAs, ensuring excellent representation of each sgRNA
- Sequence verification provides high quality of each sgRNA
- Small library sizes: Reduces time and cost of screening

GeneCopoeia sgRNA libraries

GeneCopoeia Technical Note: sgRNA libraries

TECHNICAL NOTE

Genome Editing: Applications For GeneCopoeia CRISPR sgRNA Libraries

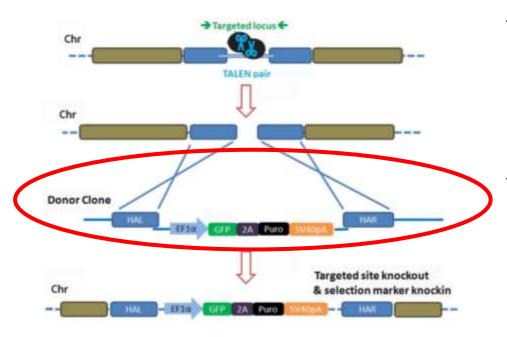
Ed Davis, Ph.D.

Biomedical researchers are enjoying a Renaissance in functional genomics, which aims to use a wealth of DNA sequence information—most notably, the complete sequence of the human genome—to determine the natural roles of the genes encoded by the genome. As a result, biochemical networks and pathways will be better understood, with the hope of leading to improved disease treatments.

A major approach of functional genomics is to ablate gene function, by either "knockdown" (reduction) or "knockout" (complete elimination). Since 2012, researchers have turned increasingly to CRISPR (clustered, regularly interspaced, short palindromic repeats) for functional genomics studies. CRISPR's simple RNA-guided mechanism provides a quick, convenient, and relatively low-cost method for many applications, from gene knockout, in-frame fusion tagging, mutagenesis, and transgene knockin. Several groups recently adapted CRISPR for high-throughput knockout applications, by developing large-scale CRISPR sgRNA libraries. GeneCopoeia recently launched a number of smaller, pathway- and gene group-focused CRISPR sgRNA libraries, which offer several key advantages over the whole-genome libraries. In this Torbaical Material Materials, how to use

Download from:

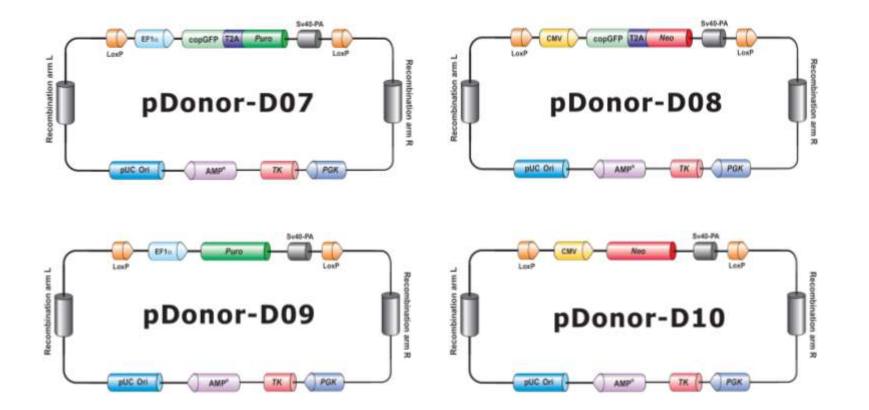
http://www.genecopoeia.com/wp-content/uploads/2015/04/GeneCopoeia-Technical-Note-CRISPR-sgRNA-Libraries-05-2015.pdf


Donor plasmid design services

Why use a donor?

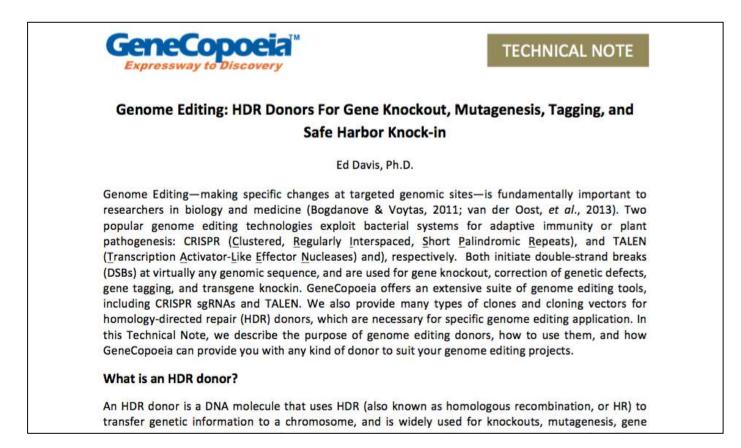
- Donor plasmids needed for HR-mediated transgene knockin
- Knocked in selectable & fluorescent markers can be identified easily. NHEJ mutations have no selection. Good for low transfection efficiency
- HR-mediated mutations are predicable, unlike NHEJmediated mutations

Donor plasmid design services



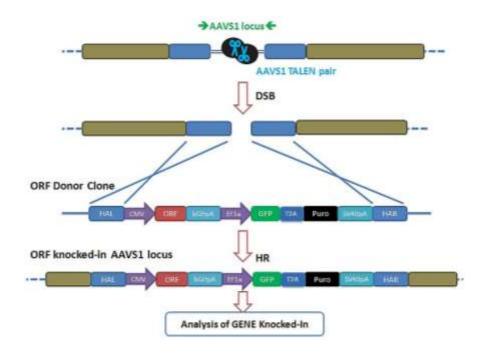
Features

- Homologous arms flanking targeted site are engineered to flank markers for drug selection, fluorescence, and more
- Markers flanked by loxP sites for Cre-mediated removal, if desired



GeneCopoeia genome editing services Donor plasmid design services & DIY cloning vectors

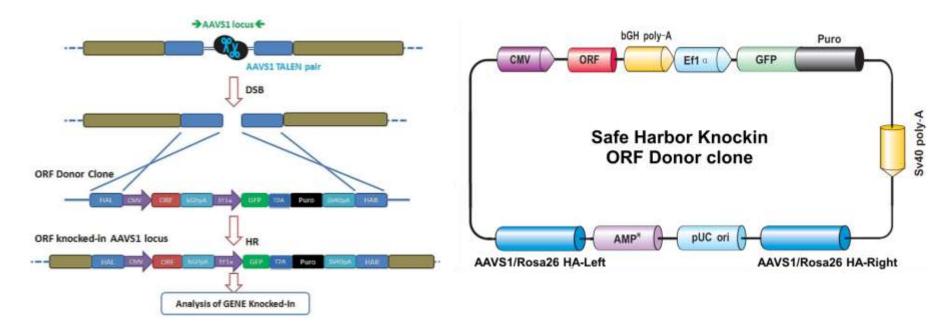
GeneCopoeia Technical Note: Donor clones



Download from:

http://www.genecopoeia.com/wp-content/uploads/2016/06/GeneCopoeia-Technical-Note-Donor-applications-06-2016.pdf

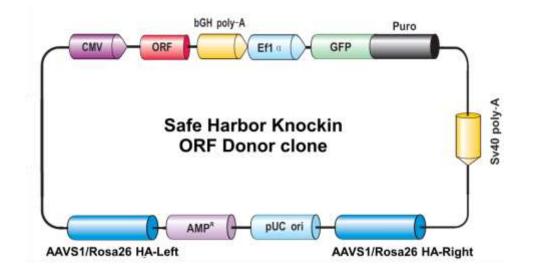
GeneCopoeia genome editing services Safe Harbor



Features

- Human AAVS1 & mouse Rosa26 sites ensure transcriptioncompetency of the transgenes & present no known adverse effects on cells
- Safe Harbor integration provides low copy number of transgene & close to physiological-level expression.

Safe Harbor knock-in ORF clones



Features

- Over 40,000 sequence-verified human & mouse ORFs available
- Inserted between AAVS1 or Rosa26 sites for ready safe harbor integration

Safe Harbor knock-in ORF clones

Some applications for Safe Harbor knockin ORF clones:

- Rescue of a knockout or mutagenesis phenotype
- Overexpression of a fusion tagged protein
- Expression of a gene from a different species (e.g. human gene in a mouse)

GeneCopoeia Application Note: Safe Harbor

APPLICATION NOTE

GeneCopoeia Genome Editing Tools for Safe Harbor Integration in

Mice and Humans

Ed Davis, Liuqing Qian, Ruiging II, Junsheng Zhou, and Jinkuo Zhang

Introduction

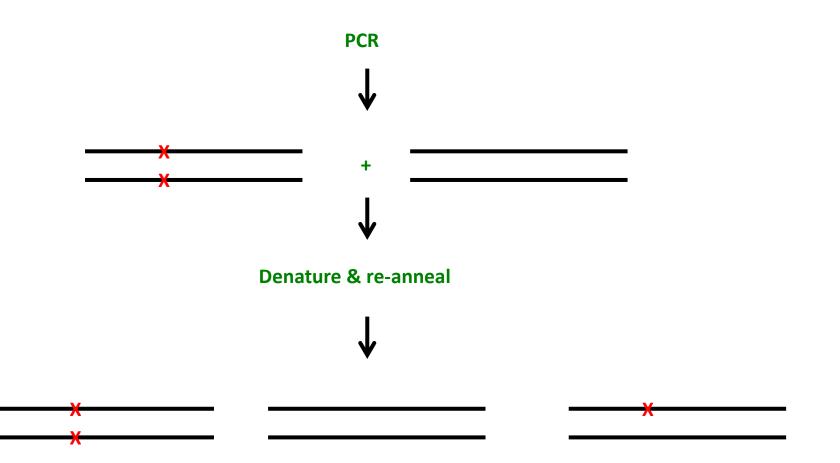
The ability to introduce transgenes into biological systems, such as cultured cells or animals, is of fundamental importance in biology and medicine. Applications for the introduction of such transgenes include, but are not limited to: 1) Overexpression of a protein of interest in order to detect a phenotype; 2) Tagging of a protein with a fluorescent marker for tracking its localization in cells; 3) Rescue of a mutant phenotype with the wild type allele; and 4) Expression of a protein from a particular species, such as mice, in an orthologous organism such as humans. Often, such transgenes are expressed transiently on plasmids. However, in many cases it is desirable to integrate the transgene into the genome so that it is stably passed on to subsequent generations. In this Application Note, we discuss the benefits and drawbacks of such integration, the use of a "Safe Harbor" for transgene integration in mice

Download from:

http://www.genecopoeia.com/wp-content/uploads/2014/04/Application_note_Safe_Harbor.pdf

What do I do next?

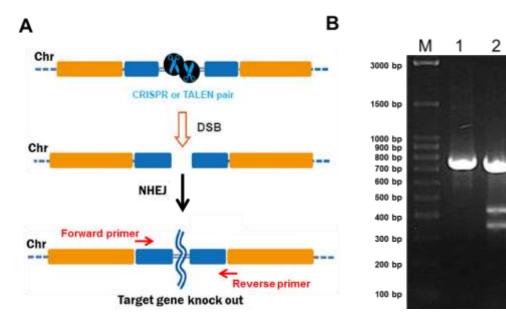
- Downstream work: Following transfection
- NHEJ-mediated applications: Might need to screen many colonies to detect modifications
- HR-mediated applications: Need to rule out random integration of donor plasmid
- All applications: Might need to mutagenize again or screen more clones for double allele modification



Why do functional validation?

- Cell culture-based genome editing projects can take 3 or more months to complete
- Not all CRISPR sgRNAs are created equal! Test first before undergoing long genome editing project to avoid wasting time and expense.

Recommend cell culture based strategy using T7 Endonuclease I assay.



Functional validation IndelCheck[™] T7 Endonuclease System

*

*

- Contains PCR and T7 endonuclease I reagents
- Purchase with or without target-specific primers

GeneCopoeia functional validation services

- Additional service available for human and mouse sgRNAs
- GeneCopoeia will transfect human (HEK293) or mouse (Neuro2A) cells with custom sgRNA plasmids
- GeneCopoeia will isolate DNA from bulk population of cells and perform T7 Endonuclease I assay
- Customer is provided with validation report

GeneCopoeia Technical Note: IndelCheck[™] kit

TECHNICAL NOTE

IndelCheck™: A Powerful CRISPR/TALEN Validation & Screening Tool

Ed Davis, Ph.D.

Introduction

Genome editing by CRISPR or TALEN often requires substantial screening work to identify correctlymodified cell clones or animals, leading to a need for effective validation and screening tools to accompany these reagents. Perhaps the most widely-used validation and screening tool is the "mismatch cleavage assay". GeneCopoeia's IndelCheck[™] insertion and deletion detection system streamlines the mismatch cleavage assay to help customers with genome editing. In this Technical Note, we discuss the benefits of performing validation assays, and show how the indelCheck[™] system is the best option for validation and screening for your genome editing applications.

Why is CRISPR and TALEN functional validation important?

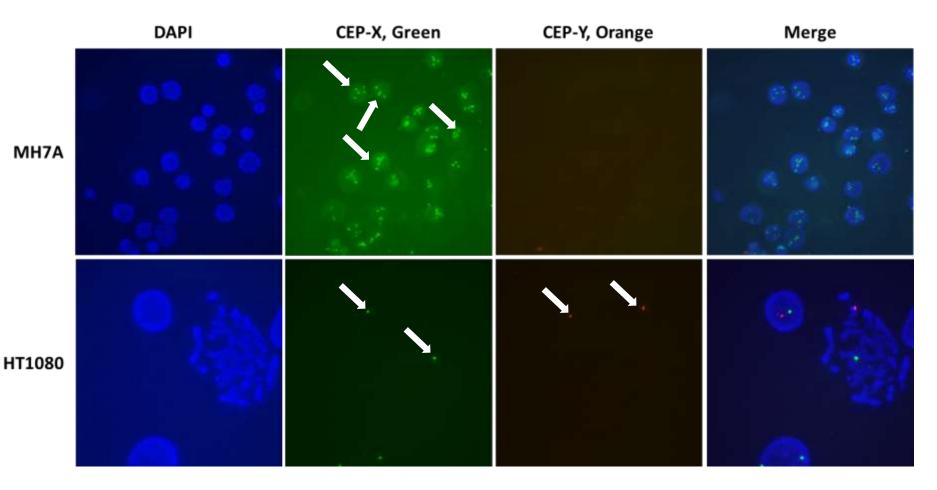
We recommend that you validate the efficiency of your CRISPR sgRNAs or TALENs before carrying out a complete genome editing project. While CRISPR and TALEN provide highly efficient methods for genome

Download from:

http://www.genecopoeia.com/wp-content/uploads/2015/07/GeneCopoeia-Technical-Note-IndelCheck-system-07-2015.pdf

Copy number determination Why do copy number determination?

- For complete knockouts or mutagenesis, might need to modify all alleles
- Not all cell lines are diploid. Some lines, like HeLa, have 3, 4, or more genomes!
- Would expect multi-allele modification to be more difficult to achieve than single allele
- However, one publication showed that double allele occurs more frequently than single allele (Gonzalez, et al., 2014. Cell Stem Cell 15, 1)


Copy number determination Application: Using FISH with a CRISPR knockout

- Project: Knock out HDAC6 gene in human MH7A cells
- HDAC6 (NCBI geneID:10013): Located on X chromosome (Xp11.23)

- ✤ MH7A cells: Human immortalized synovial fibroblast line
- HDAC6 copy number: Unknown

Copy number determination Application: Using FISH with a CRISPR knockout

Copy number determination

Application: Using FISH with a CRISPR knockout

Clone 1

	(500)	500 510	520	530	540	550	560	570	580	590	600	610	620	635
HDAC6 Targeting region NC 018934	C2-4_PREMIX (471)	TTCACAGAAGOGAAA	TATTAAAAA	SOCARCONTICC	CCGCT/CTATO	AT TAK	AGGCCTCCTCC	GAGOGGATGI	ACCCCGAGGA	.CGGDGCCCC	CAGGTAAAI	AAGAAAGGCAA	ANTGAAGAAGE	TOGOCAA
Allele a	C2-6_PREMIX (470)	TTCACAGAAGCGAAA	TATTAAAAA									AAGAAAGGCAI	ARTGANGANCO	TOGGECAA
Allele b	C2-11_PREMIX (469)	TTCACAGAAAGCGAAA	TATTAAAAA	GGAGCCGTTCC	<u>////</u>	*******				*********	MAN	AAGAAAGGCAA	MATGAAGAAGC	TOGGCCAA
Allele c	C2-7_PREMIX (472)	TTCACAGAAGCGAAA	TATTAAAAA	BUAGCOUTING	CONTRACTOR	CAAT				G	GAGGTAAA	AAGAAAGGCAI	AATGAAGAAGE	TOGGCCAN
Allele c	2A-F_PREMIX (470)	TTCACINGNAGCGAAM	TRITABAAA	GGAGCCGITCC	COSCILLIATO	CCANTS					GAGGTAAA	AAGAAAGGCM	MANTGAAGAAGC	TOGGOCAA
Allele d	C2-5_PREMIX (470)	TTCACAGAAQCGAAA	TATTAAAAA	GIGAGCOGPTCC	COOCT CTATO	WTAAT TA	G	*******	*********		AGTARA	AAGAAAGGEAJ	MATGAAGAAGI	TOGECCAR
Allele d	C2-8_PREMIX (474)	TICMONGAAGCGAAA	TATTAAAAA	GEAGCOGTICC	COCOCTCTATO	COMPCEM	G	*******			GAGGTAAA	AAGAAAGGCAA	MATCANGANGC	TOGGOCAA
Allele d	2B-F_PREMIX (472)	TTCA: AGAAOCGAAA	TATTAAAAA	GGAGOOGTTCC	COCOTTATO	CCARTCER	G				GAGGTAAAI	AAGAAAGGEAI	AATGAAGAAGC	TOGGOUAR
Allele d	2C-F_PREMIX (470)	TTCPCNGAAGCGAAA	TATTABAAA	GGAGCCETTCC	XCCGCTCTATCX	CCANTITA	G			06	GAGGTAAA	AAGAAAGGCAI	MATGAAGANGO	TOGGOCAA
Allele e HD	AC6 Targeting Region NC_018934 (500)	TTCACAGAAOCGAA	TATTAAAAA	GGAGCCGTTCC	XCOGCTUTATOX	XCCAATCTA	C			G	GAGGTAAAA	ANGAANGGON	MATGAAGAAGC	TOGGOCAR
Consensus	Consensus (500)	TTCACAGAAGCGAAA	TATTAAAAA	GGGAGCCGTTCC	CCGCTCTATC	CCAATCTA	1			CG	GAGGTAAA	JAAGAAAGOCAA	NAATGAAGAAGC	TOGGOCAA

Clone 2

	(553)	553 560	570	580	590	600	610	620	630	640	650	660	670	688
HDAC6 Targeting region NC 018934	C3-11_PREMIX (487)	TANA A GA	C <mark>CGTTOCCE</mark>	CTATOCOCA	VTCTAGAGGCC	TCCTCCGAGC	GGATGTACCCC	GAGGACGGC	SCCCC66AG67	MAGUAGAN	GCAMATG	MGMOCTO	GCCAAGCAAT	SAAGAAG <mark>ACCTA</mark>
Allele f	C3-8_PREMIX (516)	CATTAATGA	AT COGC CAAC	GCCGGGAGAG	CGGTTTG	C	STATIGGCCCC	TCTTOCGCT	ICCTCGCTCAC	FGACTOCCT(CCCTOSSIC)	FTCG CTG	CGCCGACCGC17	ATCA CTCNCTCA
Allele g	C3-6_PREMIX (487)	TAALAAGIGA	Cetriced.		*********		**********			MAGAAGAA	GCAMATG	MGAANCT O	SGOCAATCAAT	KEANEAAG <mark>ACUTU</mark> A
Allele g	3C-F_PREMIX (487)	CAAAAA COSA	2007 10 0C-							LA <mark>A</mark> CAA <mark>C</mark> AA)	AG <mark>SC</mark> RAAA <mark>N</mark> U	ANGANGCT CI	OCCAROCANTI	SAAGAAG <mark>ACCEA</mark>
Allele h	C3-10_PREMIX (487)	TRARNAGGAR	a <mark>cente</mark> a d <mark>e</mark>	CTATCCGC					GGAGGT	VA <mark>A</mark> GAA <mark>G</mark> AAJ	AG <mark>OC</mark> RARADGI	ANGANG <mark>CT</mark> O	SCCARCART(CAAGAAG <mark>ACCIA</mark>
Allele i	3A-F_PREMIX (487)	TAAAAATISA	CGI O C	211						A <mark>A</mark> KAA <mark>G</mark> AAJ	AG <mark>GCNRAAT</mark> G	MAGAAG <mark>CT</mark> O	BOCKARCANT	AN-ANNACE IA
Allele i	3B-F_PREMIX (492)	IN <mark>N</mark> NN AGGAN	al <mark>ogi to</mark> ca <mark>c</mark> i	<u>777</u>			*********			LA <mark>A</mark> GAA <mark>G</mark> AAJ	AG <mark>BCRARA</mark> DGI	AGAAG <mark>CT</mark> D	GOCARCANT	CAAGAAG <mark>ACUTA</mark>
Allele i	C3-4_PREMIX (488)	TAARAACIGGA	CGI 70. (CI	211						LA <mark>A</mark> CAR <mark>C</mark> ARJ	AG <mark>SCAAAA</mark> AS	NAGAAG <mark>CT</mark> O	BOCKAGCART	REAAGAAG <mark>ACCTA</mark>
Allele i	C3-5_PREMIX (487)	TAAAAAGGA	n <mark>an na da</mark>							NA <mark>A</mark> GAA <mark>G</mark> AAJ	AG <mark>OCANAAT</mark> GI	NAGANG <mark>CT</mark> CI	POCTADCAATE	GAAGRAG <mark>ACETIA</mark>
Allele i	C3-9_PREMIX (488)	NANANGOGN	d <mark>een t</mark> elde							UN <mark>A</mark> GAA <mark>G</mark> AAJ	AG <mark>SCAAAA</mark> G	AAAAAC <mark>CT</mark> O	BGCCGAGCAAT	KGAAGAAG <mark>AC</mark> UI <mark>A</mark>
Allele i HDAC6 Targeting	, Region NC_018934 (518)	MARAAGEEN	205/170.0CI	CIATOCOCAN	VICTAG				CGGAGGT	NA <mark>N</mark> GAA <mark>G</mark> AAJ	NG <mark>OC</mark> ANAA <mark>T</mark> G	W AND	FRADARCANTE	EAACAAC <mark>ACCTA</mark>
Consensus	Consensus (553)	TAAAAAGGGAI	COGTICCOC	CT						AAAGAAGAAJ	AGGERARATGI	AAGAAGCTO	GGCCAAGCAATG	SGAAGAAGACCTA

Copy number determination

GeneCopoeia Application Note: FISH with CRISPR

APPLICATION NOTE

Using GeneCopoeia FISH Probes in a CRISPR-mediated Genome Editing Workflow

Qihong Xu, Meng Zhang, Xueming Xu, and Ed Davis

Introduction

Immortalized mammalian cell lines, while providing convenient model systems for biomedical and pharmaceutical research, often carry 3 or more copies of a chromosome or gene (Wistuba, et al., 1998; Burdall, et al., 2003; van Staveren, et al., 2009). For example, the commonly-used human embryonic kidney cell line HEK293 is hypotriploid, with a modal chromosomal number of 64. Further, the ploidy of HEK293 and some other cell lines is not uniform among cells in a population. This presents special challenges for using the clustered, regularly interspaced, short palindromic repeats (CRISPR) system for genome modification in polyploid cell lines in applications that demand complete removal of the endogenous gene product. Thus, the refinement of screening methods to include gene copy number determination would be highly beneficial for genome editing in cultured mammalian cells.

Fluorescence in situ hybridization (FISH) traditionally has been used for chromosome and gene copy

Download from:

http://www.genecopoeia.com/wp-content/uploads/2016/02/FISH-for-CRISPR.pdf

Copy number determination

GeneCopoeia Application Note: Downstream work

TECHNICAL NOTE

Genome Editing in Mammalian Cells: What Do I Do Next?

Ed Davis, Ph.D.

Genome Editing-the ability to make specific changes at targeted genomic sites-is of fundamental importance in biology and medicine (for reviews, see Bogdanove & Voytas, 2011; van der Oost, et al., 2013). Two genome editing technologies have emerged recently that exploit bacterial systems for plant pathogenesis or adaptive immunity: TALEN (<u>Transcription Activator-Like Effector Nucleases</u>) and CRISPR (<u>Clustered, Regularly Interspaced, Short Palindromic Repeats</u>), respectively. Both TALEN and CRISPR use endonucleases that initiate double-strand breaks (DSBs) at virtually any genomic target sequence, and can be used for many applications, including gene knock out, transgene knock in, gene tagging, and correction of genetic defects. However, researchers are often unaware of some of the work required to identify their desired modification in their cell lines. In this Technical Note, we discuss what you need to do for genome editing in mammalian cell culture after you have obtained your reagents from GeneCopoeia, the so-called "Downstream work".

Upon receipt of plasmids

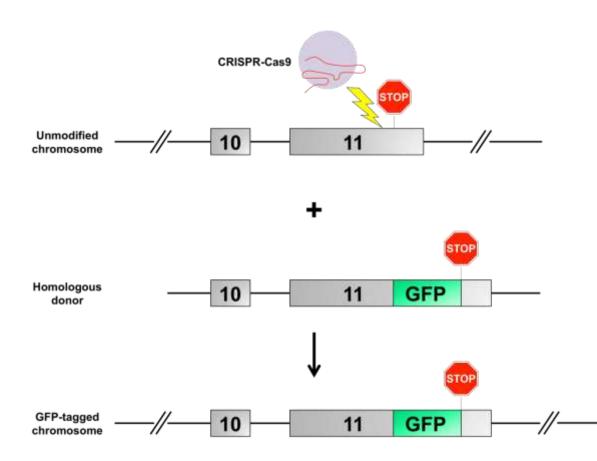
Download from:

http://www.genecopoeia.com/wp-content/uploads/2015/07/Downstream-work-07.pdf

Cas9-expressing stable cell lines

Cell lines with stably expressing Cas9

- Have pre-made lines, or can have us integrate Cas9 in your cell line
- Donor clone available for DIY stable cell line creation
- Cas9 integrated at Safe harbor locus for high expression and insertion without consequences
- Ideal for sgRNA library screening or validation


CRISPR transgenic mouse services

Features

- > Design, construction, & functional validation of CRISPR sgRNAs
- > Design & construction of homologous donors (if needed)
- > Injection of Cas9 RNA, sgRNA, and donor DNA into zygotes
- > Deliver at least 3 F1 heterozygotes

CRISPR transgenic mouse services: Case study

- Used CRISPR to create in-frame fusion tag of mouse P2RX2 gene
- Cas9 mRNA + sgRNA + donor DNA injected into pronuclei of sygotes
- Delivered F1 mice carrying modification

Summary

- CRISPR is a highly effective method for many applications, from knockout, knockin, activation, & more
- CRISPR-Cas9: RNA guided nucleases with some off-target activity, but are very easy to design and use
- GeneCopoeia offers a comprehensive suite of CRISPR products and services ideally suited to meet your genome editing needs, such as:
 - Clone design & construction
 - Kits for validation & screening
 - Cas9 stable cell lines
 - Transgenic mouse services

Upcoming webinar!

Genome Editing: How Do I Use CRISPR?

Wednesday, February 22, 2017 12:00 pm ET

Register here:

https://attendee.gotowebinar.com/register/90354328 94375025411

Thank you!

If you have any additional questions, please call 1-866-360-9531 x227 Email: edavis@genecopoeia.com Or visit us on the web: www.genecopoeia.com

GeneCopoeia, Inc.

9260 Medical Center Drive Suite 101

Rockville, Maryland USA 20850

