

How To Use Lentivirus In Mammalian Cell Lines

June 27, 2018

Presenter:

Ed Davis, Ph.D. Senior Application Scientist GeneCopoeia, Inc.

GeneCopoeia Products and Services

Functional Genomics & Cell Biology

GeneCopoeia Lentiviral Products and Services

Product/service		Description	
Lentiviral clones and cloning ve	ectors	Pre-made and custom clones carrying ORFs,	
		promoters, shRNAs, miRNA 3' UTRs,	
		precursors, and inhibitors, sgRNAs, and more.	
		Available with multiple promoters, tags and	
		reporters. Vectors for do-it-yourself cloning of	
		sequences of interest.	
Lentifect [™] lentiviral particles		Pre-made and custom-packaged, ready to use	
		lentiviral particles. Produced from	
		GeneCopoeia's extensive, genome-wide clone	
		collections or from customer-submitted	
		clones.	
Lenti-Pac [™] Lentiviral F	Packaging	Complete system of reagents for do-it-	
Reagents		yourself lentiviral particle production.	
		Includes packaging plasmids, packaging cell	
		line, particle concentration solution, and	
		titration kit.	

GeneCopoeia Lentiviral Products and Services Features

- Infect nearly all mammalian cell types
- Can be used to deliver relatively large DNA sequences-up to about 5-6 kb in length
- Can be used to generate stable cell lines, or drive stable gene expression in organs and tissues *in vivo*, due to integration of the transgene at random locations in the genome

Outline

Lentivirus: Applications

- Lentivirus: Technology overview
- Packaging lentivirus
- Transduction with lentivirus
- Things to watch out for

Why use virus for DNA delivery?

 DNA transfection not always possible or practical. Some cell lines difficult or impossible to transfect.

✤ Necessary for *in vivo*/therapeutic applications

Most mammalian cells support infection by engineered lentivirus

Protein expression via open reading frame (ORF) clones

- Available for most human and mouse genes
- Some rat and zebrafish genes available too!
- Only the ORF is inserted-no natural 5' or 3' UTRs
- 82 lentiviral vector types. Custom options available
- Nearly-whole genome collections available premade in 3 vector types

Analyze promoter function

- Available for most human and mouse genes
- Predicted promoter sequence joined to 5' end of reporter gene
- 5 lentiviral vector types. Custom options available
- Exclusively from GeneCopoeia: Secreted Gaussia luciferase + secreted alkaline phosphatase to detect activity without cell lysis!

Analyze miRNA function

GeneCopoeia miRNA precursor vector

GeneCopoeia miRNA inhibitor vector

- Available for most human, mouse, and rat genes
- Expresses miRNA from pollI promoter, and inhibitor from either U6 or H1 promoter
- 5 lentiviral vector types.
 Custom options available

Lentivirus applications Knock genes down using RNAi/shRNA

- Available for most human, mouse, and rat genes
- Expresses shRNA from either U6 or H1 promoter
- 12 lentiviral vector types. Custom options available
- Guaranteed knockdown*

CRISPR-Cas9

- 2-component system (Cas9 lentivirus and sgRNA lentivirus)
- Expresses Cas9 from polli promoter
- Expresses sgRNA from U6 promoter
- Can be used for gene knockout, knockdown (CRISPRi), activation, base editing, and more

Lentiviral CRISPR

GeneCopoeia Cas9 stable cell lines

- Cell lines with Cas9 stably integrated in the genome
- ✤ >70 pre-made cell lines available in human, mouse, and rat cell lines
- Functionally validated for Cas9 activity
- Ideal for lentiviral CRISPR applications

Lentiviral CRISPR

GeneCopoeia Cas9 stable cell lines

Outline

Lentivirus: Applications

Lentivirus: Technology overview

Packaging lentivirus

- Transduction with lentivirus
- Things to watch out for

Sakuma, et al. (2012). Biochem. J. 443, 603.

- Class of retroviruses that includes human immunodeficiency virus (HIV)
- Single stranded RNA genome of ~9.7 kb
- Integrates into genomic DNA
- Infect dividing & nondividing cells

3rd generation lentivirus

3rd generation lentivirus

6. Delete U3 region of 3' LTR (SIN)

Insert capacity

✤ HIV genome ~9.7 kb LTR-LTR

✤ Virus has physical limit. Can only fit up to certain length

 Titers drop off when distance LTR-LTR >9 kb, but can package up to about 15 kb

Outline

Lentivirus: Applications

Lentivirus: Technology overview

Packaging lentivirus

Transduction with lentivirus

Things to watch out for

What do I need?

Sakuma, et al. (2012). Biochem. J. 443, 603.s

- Packaging cell line. Most use HEK293T
- Transfection reagent

GeneCopoeia Lenti-Pac[™] packaging reagents

- ✤ Lenti-Pac[™] HIV Expression Packaging Kit: Optimized for high-titer lentivirus packaging
 - Packaging plasmid mix (packaging plasmid, VSV-G env plasmid, Rev plasmid)
 - ✤ GFP control plasmid
 - Transfection reagent (Endofectin[™] Lenti)
 - ✤ TiterBoost™: Proprietary reagent that increases viral titers 5-10 fold

Packaging workflow

Purification

- Purification is not required for cell culture use. Can just use medium to infect
- However, purification will increase titer and get rid of potentially unwanted cell debris and proteins from medium
- Purification is absolutely required for *in vivo* (animal) use to avoid toxicity and immunological response.

GeneCopoeia Lenti-Pac[™] Concentration Solution

- Simple protocol: Just centrifuge or filter particles (to remove cells and debris), mix with the concentration solution and incubate, then centrifuge and resuspend in PBS
- Concentrates particles and increases titer 10-100 fold
- ✤ Also helps in removing some cellular debris and proteins
- Link to protocol: http://www.genecopoeia.com/wpcontent/uploads/2017/06/Lenti-Pac_Lentivirus_Concentration_Solution_Manual.pdf

Why should I determine titer?

✤ Necessary to determine success of packaging reaction

Also needed to determine correct volume of virus needed for infection

Titration methods: Physical and Functional titer

- Physical titer is expressed as Viral Particles per ml (VP/ml), but titer is most commonly expressed functionally, as Transduction Units per ml (TU/ml)
- Functional titer: Determine actual number of infectious viral particles
- Functional titer determination works best if lentivirus expresses a fluorescent reporter
- Can also use a colony-forming assay following antibiotic selection

Functional titer: Fluorescence

Functional titer: Fluorescence

Tite r	=	Fraction of positive cells	X	Total # of cells
				Volume of particles (ml)

So, if 50% of 100,000 cells are fluorescent from 1 ul virus, then

Functional titer: Drug selection

Functional titer: Drug selection

So, if 50% of 100,000 cells are drug resistant from 1 ul virus, then

Titration methods: Physical titer

- Determine number of copies of virus and estimate number of infectious viral particles
- Not as accurate as determining functional titer, due to detection of components that can be present in non-functional particles
- Can be determined for any lentiviral particles
- Much more convenient, universal, and faster than determining functional titer

Physical titer: 2 widely-used methods

- p24 method: Use ELISA to determine # of copies of p24 capsid protein in sample
- qPCR method: Use quantitative PCR to determine # of copies of viral genome-faster and more convenient than p24 ELISA method

Physical titer: Lenti-Pac[™] HIV qRT-PCR Titration Kit

- qRT-PCR based lentiviral titration to determine the copy numbers of HIV lentiviral particles.
- Simple fast, & convenient: Can have results in as little as 2 hours
- Contains all reagents needed for RNA extraction, reverse transcription, and qPCR
- Detailed protocol at: http://www.genecopoeia.com/wpcontent/uploads/2017/06/Lenti-Pac_qRT-PCR_Titration_Kit_manual.pdf

Important considerations

- Generation: The Lenti-Pac[™] packaging system is 3rd generation
 - Can use for packaging GeneCopoeia lentiviral plasmids or any other 3rd generation plasmid
 - <u>Cannot</u> use for packaging 2nd generation plasmids, which are Tatdependent
- Lentivirus must be handled in a Biosafety level 2 (BSL-2) facility. Make sure your facility has this capability
- Plasmid propagation: Transform bacteria with your plasmids. Use a stability strain of *E. coli* like GeneCopoeia's GCI-L3.
- Plasmids should be endotoxin-free. Be sure to use plasmid preparation products that remove endotoxin, which can kill cells
- Avoid freeze-thaw of lentiviral particles, which reduces particle viability.
- How much to make-MOI

Important considerations (cont'd)

- Mycoplasma: Cells should be mycoplasma-free. Use GeneCopoeia's Mycoguard[™] mycoplasma detection kit
 - PCR-based detection kit for multiple strains of mycoplasma
 - Convenient: No need to pre-treat culture medium
 - Fast: Results in as little as 2 hours

GeneCopoeia Lentiviral Particles

- Ready-to-use. Let GeneCopoeia do the packaging, concentration, and titration for you
- ✤ High-titers-up to 1 x 10E9 TU/ml
- Available in 2 purity levels: Purified-for in vitro (cell culture), and ultra-purified (for animal models)

Outline

Lentivirus: Applications

- Lentivirus: Technology overview
- Packaging lentivirus
- Transduction with lentivirus
- Things to watch out for

Considerations

- ✤ MOI: Determine optimal MOI of cell line before use
- Health of cells: Need to be low passage and mycoplasma-free
- Selection or screening. How are you going to detect infection?
- Stable pool vs. single clone
- ✤ BSL-2
- Adherent cells vs. suspension cells. Suspension cells are harder to infect than adherent cells.

Multiplicity of infection (MOI)

- Number of infectious particles per cell
- Optimal number. If too low, don't get enough infection. If too high, can be toxic
- Varies based on cell line
- Known for some cells. Others must be determined experimentally

Lentivirus transduction Multiplicity of infection (MOI)

Cell line	Tissue	Cancer/cell type	Species	MOI
A431	Epithelial	Carcinoma	Human	5
A549	Lung	Carcinoma	Human	5
Astrocytes	Nervous system	Primary	Human	1
B16-F10	Epithelial	Melanoma, metastatic	Mouse	5
BMM	Bone Marrow	Primary	Human	8
BxPC-3	Pancreas, epithelial	Adenocarcinoma	Human	10
H3255	Lung	Carcinoma, NSCLC	Human	10
HCT116	Colon	Carcinoma	Human	5
HeLa	Cervix	Carcinoma, epitheloid	Human	3
HEK293T	Kidney	Tumor	Human	5
Hepa1-6	Liver	Carcinoma	Mouse	3
HMVEC	Endothelial	Endothelial, microvascular	Human	100
HT-29	Colon	Adenocarcinoma	Human	3
HUVEC	Umbilicus	Endothelial cells	Human	100

Cell line	Tissue	Cancer/cell type	Species	MOI
Jurkat	Blood	Leukemia, Acute T Cell	Human	10
LLC-1	Lung	Carcinoma	Mouse	6
LNCaP	Prostate	Carcinoma	Human	5
MM200	Skin	Melanoma	Human	5
MCF-7	Breast	Adenocarcinoma	Human	2
MDA-MB-231	Breast	Adenocarcinoma	Human	1
MM-AN	Skin	Melanoma, metastatic	Human	16
MMC	Breast	Carcinoma	Mouse	4
MRC-5	Lung, embryonic	Fibroblasts	Human	1
NB4	Blood	Leukemia, acute promyelocytic	Human	10
PC12	Adrenal gland	Pheochromocytoma	Rat	20
SKOV-3	Ovary	Adenocarcinoma	Human	15
U-2 OS	Bone	Osteosarcoma	Human	5

Determining MOI

- Transduce cells with varying dilutions of lentivirus
- Can be any lentivirus, but important to have good marker
- ✤ Best to use fluorescent reporter
- Detailed protocol for transducing cells: http://www.genecopoeia.com/wpcontent/uploads/2018/03/Lentivirus-protocol-GeneCopoeia.pdf

GeneCopoeia Pre-made control particles

- ✤ Great for pre-determining optimal MOI of a cell line
- Express fluorescent reporters such as GFP, YFP, & mCherry
- Available with different selection markers, such as Puromycin and neomycin
- ✤ High titers (>1 x 10E8 TU/ml)
- Pre-made and available for next-day shipping

Multiplicity of infection (MOI)

Download from:

http://www.genecopoeia.com/wp-content/uploads/2015/01/Technical-Note-Lentiviral-MOI-201411.pdf

Generating stable cell lines

- Lentivirus stably integrates by default
- Can use antibiotic selection to create a stable pool, or use to generate single clones
- Alternatively, can use fluorescence sorting
- General protocol for infecting cells with lentivirus: http://www.genecopoeia.com/wpcontent/uploads/2018/03/Lentivirus-protocol-GeneCopoeia.pdf

Stable pool vs. single clone

- Stable pools are much less labor intensive, and are often sufficient for most shortterm studies
- ✤ However, lentivirus integration is random.
- Stable pool population will be mixed. Subpopulations will have:
 - Insertions at different locations in the genome
 - Different # of copies of insertions

Why should I do single clone isolation?

- Can isolate single clones with varying levels of expression
- ✤ Single clones might be more stable over time
- "Clean up" genetic background

Clonal isolation methods

 Minimizes potential effects of unwanted modifications resulting from random insertion, cell division or off-targeting

What do I do after infection?

 Depends on what you are expressing in the lentivirus (ORF, promoter, shRNA, CRISPR, etc.)

Type of insert	Detection methods	GeneCopoeia products
ORF	 Western blot Fluorescence qRT-PCR Luciferase assays 	 Labeled secondary antibodies All-In-One[™] First Strand cDNA synthesis kit BlazeTaq[™] qPCR mix Luc-Pair[™] firefly and <i>Renilla</i> luciferase assay kits
Promoter-reporter	Dual luciferase assayFluorescence	 Secrete-Pair[™] Gaussia luciferase assay kits
CRISPR (gene KO, interference, or activation)	 PCR-based mutation detection qRT-PCR 	 IndelCheck[™] Insertion/deletion detection system All-In-One[™] First Strand cDNA synthesis kit BlazeTaq[™] qPCR mix
shRNA (gene knockdown)	Western blotqRT-PCR	 Labeled secondary antibodies All-In-One[™] First Strand cDNA synthesis kit BlazeTaq[™] qPCR mix
miRNA (precursor or inhibitor)	• qRT-PCR	 All-In-One[™] First Strand cDNA synthesis kit BlazeTaq[™] qPCR mix

Outline

- Lentivirus: Applications
- Lentivirus: Technology overview
- Packaging lentivirus
- Transduction with lentivirus
- Things to watch out for

Things to watch out for

- Expression: Sometimes, stable cell lines lose gene expression over time. Consider single clone isolation and banking of multiple clones.
- Titer. If titer is low, could the insert be too big? Or are the cells unhealthy?
- Safety. Make sure to handle under BSL-2 conditions. Cover up all exposed skinparticles can infect you too!

Summary

- Lentiviral vectors are engineered vehicles that are highly efficient for DNA delivery to a wide variety of dividing and non-dividing cells.
- Packaging lentivirus is straightforward, but requires many components and experience to achieve good results.
- Infecting cells with lentivirus is simple, but requires much consideration of factors such as titer, MOI, the health of the cells, and whether you need stable pools or single clones.
- GeneCopoeia provides solutions for virtually every phase of the workflow for using lentivirus to establish stable cell lines, from lentiviral plasmids, packaging reagents and accessories, lentiviral particle production, qPCR reagents, & more.

Subscribe to our blog!

Stay up-to-date on the latest technologies behind GeneCopoeia's products

Check it out

here:

http://genecopoeia-2432656.hssites.com/blog/new-discoveries-usinglentiviral-vectors-for-screening-cancer-cells

Thank You!

If you have any additional questions, please call 1-866-360-9531 x227 Email: edavis@genecopoeia.com Or visit us on the web: www.genecopoeia.com

GeneCopoeia, Inc.

9260 Medical Center Drive Suite 101

Rockville, Maryland USA 20850

