# **Genome Editing Solutions**



#### Precision genome modification

Genome-TALER<sup>™</sup> custom TALEN and TAL effector services Genome-CRISP<sup>™</sup> CRISPR-Cas9 products and services

#### Validation and more

Functional validation Donor clone design and construction Stable cell line development Transgenic mouse development

#### Safe harbor genome integration

Human AAVS1 safe harbor gene knock-in kit Human AAVS1 safe harbor knock-in ORF clones



#### **Targeted genome editing at will**

One of the most common approaches for analyzing gene function is to alter the sequence of a gene and monitor its effects on the organism. Genome editing is one such type of modification, in which DNA is inserted, replaced or removed from a genome by engineered nucleases. These nucleases induce double-strand breaks (DSBs) at defined sites, leading to modifications resulting from the cellular repair mechanisms of non-homologous end joining (NHEJ) and homologous recombination (HR; Figure 3). Alternatively, this technology can be adapted to target engineered transcription factors to specific sites in order to transiently stimulate or repress gene expression (Figure 2).

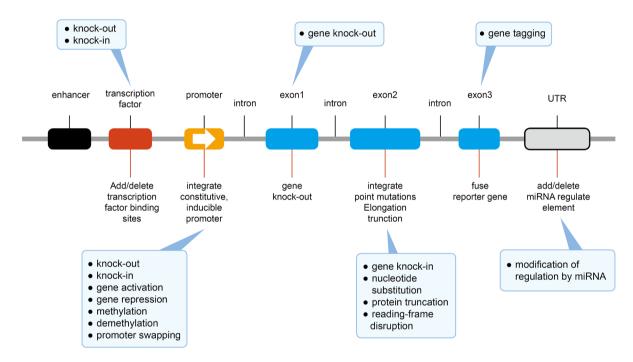



Figure 1. Applications for targeted genome editing

### Mechanisms of genome editing

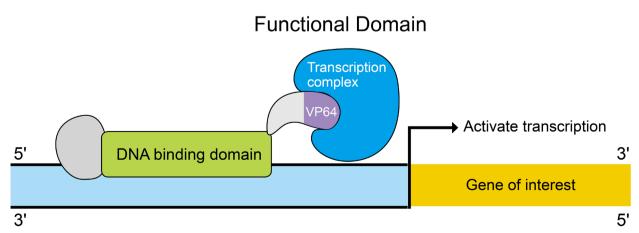
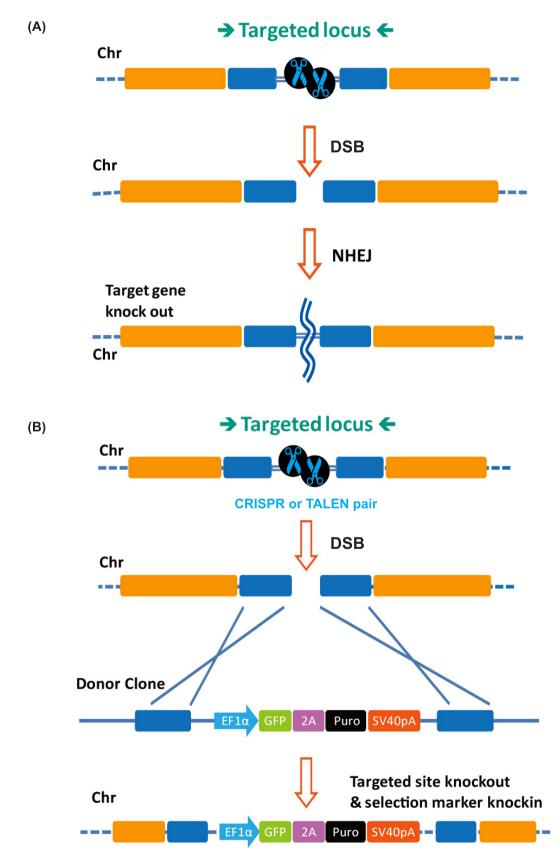




Figure 2. Gene transcription manipulation with engineered transcription factors.

## **Genome Editing**



**Figure 3. Genome editing with engineered nucleases. (A)** DSB created by engineered nucleases are repaired by NHEJ. **(B)** DSB created by engineered nucleases are repaired by the insertion of genes of interest (GOI) & selection markers (or other genetic elements) from a donor plasmid through HR.

#### Product Portfolio

### Genome-TALER<sup>™</sup> TAL effectors

| Product/Services           | Description                                                                                                                             |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|                            | Sequence-confirmed plasmid pair expressing engineered TALE nuclease                                                                     |
| TALEN                      | specifically targeting your genome site of interest.                                                                                    |
| TALE-TF                    | Sequence-confirmed plasmid expressing engineered TALE transcription                                                                     |
| TALE-IF                    | activator targeting your promoter region of interest.                                                                                   |
| Validation services        | Functional validation of your TAL effector.                                                                                             |
| Donor clones               | Knockin desired sequences to your genomic site of interest via TALEN-<br>mediated homologous recombination. Various vector choices with |
| Donor ciones               | different reporter genes and selection markers.                                                                                         |
| Stable cell line services  | Monoclonal stable cell lines with TALEN-mediated genome modifications.                                                                  |
| Stable cell liffe services | Cell banking service available.                                                                                                         |
| Transgenic mouse services  | Transgenic mice with TALEN-mediated genome modifications.                                                                               |

#### Genome-CRISP<sup>™</sup> CRISPR-Cas9 system

| Product /Services              | Description                                                            |
|--------------------------------|------------------------------------------------------------------------|
| Cas9 nuclease expression clone | Express Cas9 nuclease to create double-strand break at your genomic    |
| Case inclease expression clone | site of interest in combination with sgRNA(s).                         |
| Cas9 nickase expression clone  | Express engineered Cas9 nickase to create single-strand nick at your   |
| Case flickase expression clone | genomic site of interest in combination with sgRNA(s).                 |
|                                | Transcribe sgRNA(s) to guide Cas9 nuclease to target sites. Various    |
| sgRNA clones                   | vector choices for transcribing sgRNA alone or with the Cas9 nuclease  |
|                                | expression cassette built in.                                          |
| Validation services            | Functional validation of your CRISPR sgRNA(s).                         |
|                                | Knockin desired sequences to your genomic site of interest via CRISPR- |
| Donor clones                   | Cas9-mediated homologous recombination. Various vector choices with    |
|                                | different reporter genes and selection markers.                        |
| Stable cell line services      | Monoclonal stable cell lines with CRISPR-Cas9-mediated genome          |
|                                | modifications. Cell banking service available.                         |
| Transgenic mouse services      | Transgenic mice with CRISPR-Cas9-mediated genome modifications.        |

### Genome-TALER<sup>™</sup> human AAVS1 safe harbor

| Catalog#               | Product                                                          | Description                                                                                                                                                                         |
|------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SH-AVS-K100            | Human AAVS1 safe harbor<br>gene targeting kit                    | Includes:<br>AAVS1 TALEN pair (TN-AAVS1)<br>AAVS1 donor cloning vector (DC-DON-SH01)<br>AAVS1 positive control donor (DC-RFP-SH01)<br>knock-in verification primer pairs (HQPAVSHR) |
| SH-AVS-K000            | Human AAVS1 safe harbor<br>gene targeting kit<br>(without donor) | Includes:<br>AAVS1 TALEN pair (TN-AAVS1)<br>AAVS1 positive control (DC-RFP-SH01)<br>knock-in verification primer pairs (HQPAVSHR)                                                   |
| Knock-in ORF<br>Clones | Human AAVS1 knock-in ORF<br>clone                                | AAVS1 knock-in ORF donor clone containing CMV-<br>driven ORF of customer's gene of interest                                                                                         |

#### **Choice of service levels**

| Services                | Engineer | Value     | Essential | Premium   | Project*** |
|-------------------------|----------|-----------|-----------|-----------|------------|
|                         | 2 weeks  | 3-5 weeks | 3-5 weeks | 7-8 weeks | Various    |
| Genome editing tool     | al       | al        | al        | al        |            |
| design                  | V        | N         | N         | N         |            |
| Clone engineering &     | al       | al        | al        | al        |            |
| sequencing              | V        | N         | N         | N         |            |
| Plasmid-level           |          |           |           |           |            |
| functional validation*  |          | N         |           | N         |            |
| Chromosomal-level       |          |           | al        | al        |            |
| functional validation** |          |           | N         | N         |            |
| Additional or           |          |           |           |           |            |
| customized services     |          |           |           |           | N          |

\* Nuclease tools: surrogate reporter assay

Transcription activator: surrogate reporter transactivation assay

- \*\* Nuclease tools: mismatch detection analysis
- Transcription activators: transactivation assay

\*\*\*Includes donor service, stable cell line service, and transgenic mouse service

#### **Advantages**

- **Complete solutions.** Genome editing tool design and construction, functional validation services, donor design and construction services, cell or animal model development services for a complete TALE or CRISPR project.
- Sequence guarantee. All constructs are sequence verified and guaranteed.
- **Fast delivery.** Fast delivery for both CRISPR and TAL effector constructs. We have pre-built and sequence-verified TAL effector modules for quick assembly.

| Property                        | TALEN                                      | CRISPR-Cas9                                                   | ZFN                                             |
|---------------------------------|--------------------------------------------|---------------------------------------------------------------|-------------------------------------------------|
| Type of recognition             | Protein-DNA                                | RNA-DNA                                                       | Protein-DNA                                     |
| Recognition mode                | Uses a simple, virtually one-to-one code   | Uses Watson-Crick<br>base pairing                             | Recognizes DNA triplets with context dependence |
| Methylation sensitivity         | Sensitive                                  | Not sensitive                                                 | Sensitive                                       |
| Chromatin structure sensitivity | Sensitive                                  | Sensitive                                                     | Sensitive                                       |
| Off-target activity             | Less observed off-target activity than ZFN | More potential off-target<br>activity than TALENs<br>and ZFNs | More potential off-target activity than TALENs  |
| Multiplexing                    | Rarely used                                | Capable                                                       | Rarely used                                     |

#### Comparison between TALEN, CRISPR-Cas9 and ZFN



#### **TALEN** custom services

Transcription activator-like (TAL) effectors are proteins secreted by Xanthomonas bacteria when they infect plants. These proteins can activate the expression of plant genes by recognizing and binding host plant promoter sequences through a central repeat domain consisting of a variable number of ~34 amino acid repeats. The residues at the 12th and 13th positions of each repeat are hyper-variable. There appears to be a simple one-to-one code between these two critical amino acids in each repeat and each DNA base in the target sequence, e.g. NI = A, HD = C, NG = T, and NN = G or A (Figure 4). Recent work has demonstrated that the NH RVD has greater specificity and comparable affinity for G compared with NN. Therefore, the NN RVD has been replaced for G recognition by NH. GeneCopoeia also uses the N\* RVD for recognition of 5-methyl cytosine.

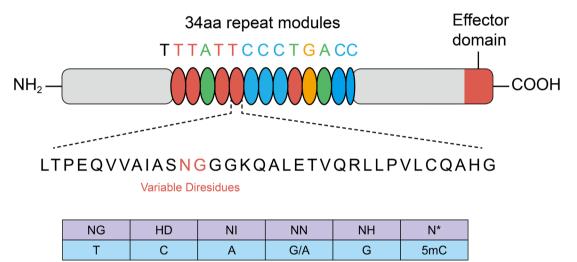



Figure 4. Top: Schematic of a TAL effector. Bottom: Typically-used RVD recognition code

A TAL effector nuclease (TALEN) contains a TALE DNA binding domain fused to the Fokl nuclease. Two TALENs must bind on each side of the targeted site for Fokl to dimerize and generate a DSB (Figure 5). The cellular repair mechanism of non-homologous end joining (NHEJ) can then reconnect the DNA and induce insertion or deletion errors at the site of the break. Alternatively, an exogenous double-stranded donor DNA fragment can be used to repair the DSB by homologous recombination (HR). TALENs have been used to generate stably modified human embryonic stem cell and induced pluripotent stem cell (IPSCs) clones, and to generate knockout organisms such as rats, C. elegans, and zebrafish.

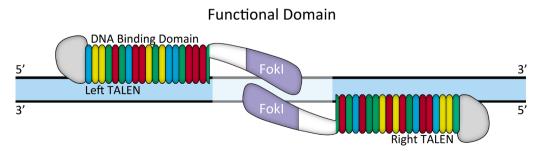



Figure 5. Typical TALEN design strategy

## TALEN

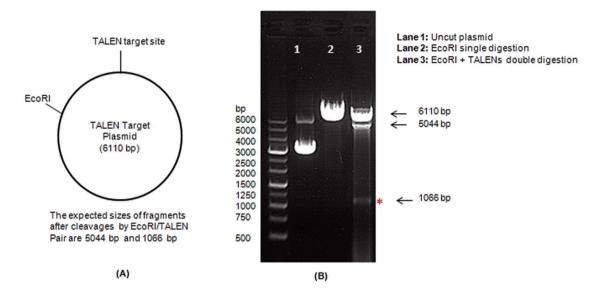
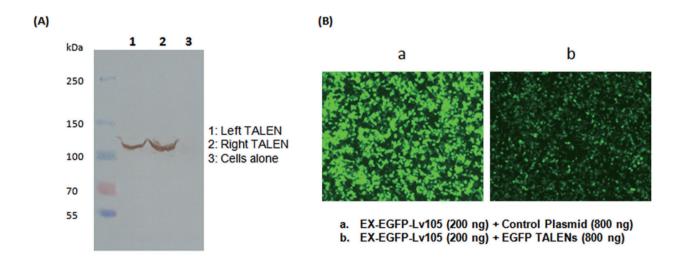
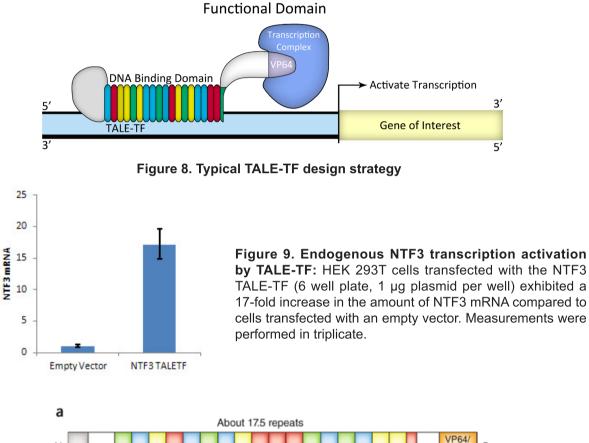
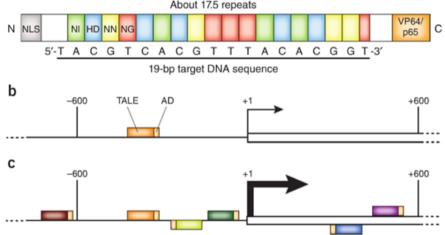




Figure 6. In vitro target DNA cleavage by EGFP-TALENs. (A) The TALEN target plasmid (6110 bp) contains a unique EcoRI site and an eGFP TALEN target site. The two sites are1066 bp apart. (B) 1  $\mu$ g of the plasmid was incubated with the indicated enzymes for 30 min at 37°C. 0.5 volume of the digestion reaction was analyzed by agarose gel electrophoresis. \* The indicated fragment was analyzed by PCR (data not shown)





**Figure 7. TALEN-mediated knockdown of eGFP expression. (A)** eGFP TALENs expression validation: ~80% confluence HEK293T cells were transfected with 0.8 µg plasmid per well in a 6-well plate. The cells were harvested 48 hrs post-transfection. 1/20th of the cell lysate per well was analyzed by western blot using anti-Flag antibody in an SDS-PAGE (8%) gel, with the untransfected cell lysate as the negative control. (B) TALENs knockdown eGFP expression: HEK293T cells in a 6-well plate were co-transfected with EX-EGFP-Lv105 and TALEN plasmids or control plasmid. EGFP expression was checked under microscope (Nikon Eclipse Ti, exposure time: 600ms) 48hrs post-transfection.

## TALE-TF

#### **TALE-TF** custom services

A key application for TALEs is the targeted activation and repression of target genes in cells by fusing transactivation domains to TALE DNA binding domains (Figure 8). The TALE-TF construct is a powerful tool to selectively modulate gene expression in eukaryotic cells with exquisite specificity. The TALE-TF contains a TALE DNA binding domain fused to the VP64 transcription activator.





**Figure 10. Synthetic TALE activators act synergistically to express human genes. (a)** Cartoon of a TALE. The indicated amino acids in each repeat recognize the base below. NLS, nuclear localization signal; VP64/p65, activation domains (ADs). (b) Single TALEs induce target human genes with variable efficiencies. (c) Combinations of TALEs targeting either DNA strand allow for much higher gene induction rates. (Nature Methods. 2013 Vol. 10. No. 3: 207-208)

#### **CRISPR-Cas9: RNA-guided genome editing**

The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated protein (Cas) systems are adaptive mechanisms evolved by bacteria and archaea to repel invading viruses and plasmids. Recently, efficient genome editing by the CRISPR-Cas system has been shown in multiple organisms, including zebrafish, mice, rats, C. elegans, plants, and bacteria. Several groups have demonstrated that compared with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), CRISPR-Cas-mediated gene targeting has similar or greater efficiency in cells and zebrafish.

In the CRISPR-Cas9 systems, the complex of a CRISPR RNA (crRNA) annealed to a trans-activating crRNA (tracrRNA) is sufficient to guide the Cas9 endonuclease to a specific genomic sequence to generate DSBs in target DNA. This system can be simplified by fusing crRNA and tracrRNA sequences to produce a synthetic chimeric single-guided RNA (sgRNA). The selected target sequence consists of a 20bp DNA sequence complementary to the crRNA or the chimeric sgRNA, followed by the trinucleotide (5'-NGG-3') protospacer adjacent motif (PAM), which is recognized by Cas9 itself and is essential for cleavage (Figure 10).

This RNA-guided DNA recognition mechanism of CRISPR-Cas9 provides a simple but powerful tool for selected genome engineering. One of the most important advantages of CRISPR-Cas systems is that the Cas9 protein can be guided by individual sgRNAs to modify multiple genomic target loci simultaneously.

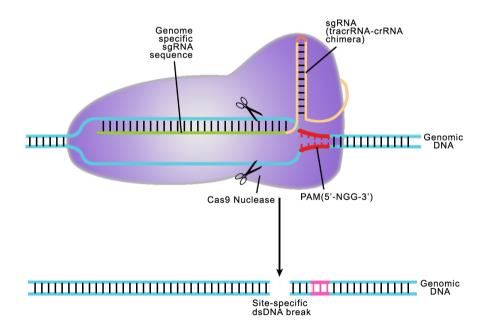



Figure 10. Illustration of CRISPR/Cas9-mediated genome editing

## **CRISPR-Cas9**

#### Cas9 expression clones

#### Genome-CRISP™ Cas9 Nuclease Expression Clone

A Cas9 nuclease expression clone is a premade clone containing the sequence of engineered Cas9 nuclease. In the presence of crRNA and tracrRNA (or chimeric sgRNA), Cas9 nuclease can be guided to induce site-specific DSBs in the host genome, which stimulates the cellular repair mechanism for further modification. (Figure 11)

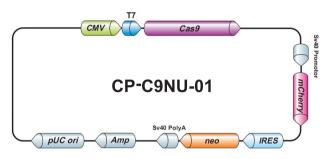



Figure 11. Map of Cas9 Nuclease Expression Clone

#### Genome-CRISP™ Cas9 Nickase Expression Clone

A Cas9 nickase expression clone is a premade clone containing the sequence of engineered Cas9 nickase (Figure12), which contains an amino acid mutation at position D10A. This mutation inactivates the nuclease catalytic activity to the complementary strand, converting a Cas9 nuclease to a "nickase" enzyme which generates a single-stranded break at the target site on the binding strand. (Figure 13)

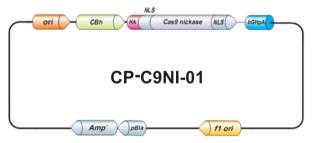



Figure 12: Map of Cas9 Nickase Expression Clone (CP-CPNI-01)

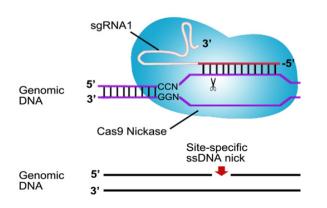



Figure 13: Illustration of Cas9 nickase generating a single-stranded break on its binding strand

#### Genome-CRISP<sup>™</sup> sgRNA clones

GeneCopoeia offers single-guide RNA (sgRNA) design and cloning services for the customer's target gene of interest. sgRNA clones express a single-stranded chimeric sgRNA, consisting of crRNA and tracrRNA. In the presence of the co-transfected Cas9 endonuclease, an sgRNA can guide the Cas9 nuclease to a target site to create a DSB for genome editing applications, including gene knockout, knockin, mutagenesis, and more. Multiple sgRNA clones can be constructed and co-transfected with one Cas9 clone to enable simultaneous editing of several sites within the genome, offering greater efficiency and flexibility for the experiment design.

#### Vector Types

| Vector       | Promoter | sgRNA         | Cas9 Nuclease                      | Selection Marker/<br>Reporter Gene |
|--------------|----------|---------------|------------------------------------|------------------------------------|
| pCRISPR-SG01 | U6       | 1 or multiple | Sold separately                    | Hygromycin                         |
| pCRISPR-CG01 | U6       | 1 or multiple | CMV-driven Cas9 in the same vector | Neomycin / mCherry                 |
| pCRISPR-CG02 | U6       | 1             | CBh-driven Cas9 in the same vector | N/A                                |

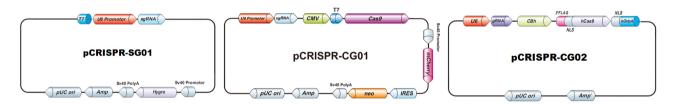
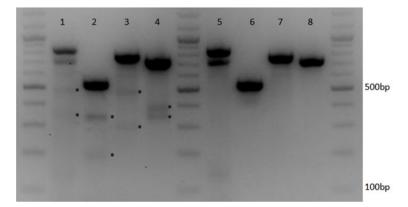
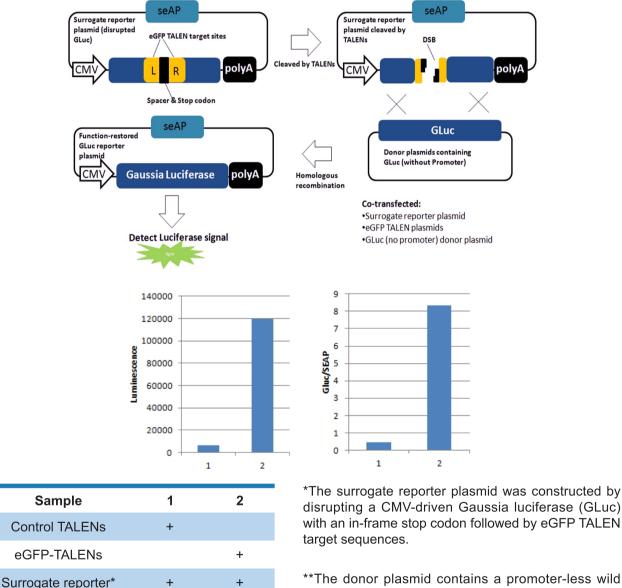




Figure 14. Maps of sgRNA vectors



**Figure 15. CRISPR-Cas9 multiplexing to target multiple genes.** HEK293T GFP-stable cells were cotransfected with plasmids expressing Cas9 plus multiple sgRNAs targeting p53, HUWE1, NCL3 and GFP (Lanes 1-4) or Cas9 plus a scrambled sgRNA (Lanes 5-8). The genomic DNAs were analyzed for coexistence of indels in multiple target sites using T7 endonuclease I (ENI) assays. The \* indicates that the Cas9 plus multiple sgRNAs efficiently introduced indels to each target site respectively (Lanes 1-4). PCR product sizes and T7ENI-cleaved product sizes: GFP: 720bp (intact), 340bp + 380bp (cleaved); NCL3: 765bp (intact), 295bp +470bp (cleaved); HUWE: 520bp (intact), 190bp + 330bp (cleaved); P53: 825bp (intact), 475bp + 350bp (cleaved).

### Services portfolio


| Services                     |                                           | Description                                                                                                                                                                                                                                                                                                                                                                        | Application                    |
|------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
|                              | Surrogate<br>reporter assay               | Plasmid-level functional validation.<br>Detects activities of genome editing tools<br>by observing the expression level of a<br>surrogate reporter gene.                                                                                                                                                                                                                           | TALEN, TALE-TF,<br>CRISPR-Cas9 |
| Validation                   | T7 endonuclease<br>I assay                | Chromosomal-level functional validation.<br>Detects the presence of indels created<br>by TALEN- or CRISPR-mediated NHEJ<br>repair at the specific target site of the<br>chromosome.                                                                                                                                                                                                | TALEN, CRISPR-<br>Cas9         |
|                              | qPCR assay                                | Chromosomal-level functional validation.<br>Measures changes in expression level of<br>the target gene induced by site-specific<br>TALE-TF transcription activator.                                                                                                                                                                                                                | TALE-TF                        |
| Donor clone services         | Donor clone<br>design and<br>construction | Customized plasmids designed to<br>specifically transfer your gene of interest,<br>selection marker or other genetic<br>elements into targeted site through<br>homologous recombination (HR) induced<br>by our genome editing tools.<br>We offer various donor vector choices<br>with different selection markers and<br>genetic elements built in for your<br>experiment purpose. | TALEN, CRISPR-<br>Cas9         |
| Otable cell line comisse     | Monoclonal<br>colony                      | Monoclonal stable cell line with TALEN-<br>or CRISPR-Cas9-mediated genome<br>modifications.                                                                                                                                                                                                                                                                                        | TALEN, CRISPR-<br>Cas9         |
| Stable cell line services    | Cell bank                                 | Create cell bank of monoclonal stable<br>cell line with TALEN or CRISPR-Cas9-<br>mediated genome modifications.                                                                                                                                                                                                                                                                    | TALEN, CRISPR-<br>Cas9         |
| Transgenic mouse<br>services | Transgenic<br>mouse                       | Transgenic mice with TALEN- or<br>CRISPR-Cas9-mediated genome<br>modifications.                                                                                                                                                                                                                                                                                                    | TALEN, CRISPR-<br>Cas9         |

### **Episomal validation**

The surrogate reporter assay is a plasmid-level functional validation. The surrogate reporter plasmid consists of a reporter gene expression cassette and the target sequence of the genome editing tool being validated.

To validate a site-specific transactivator (e.g. TALE-TF), the promoter region of a reporter gene expression cassette is replaced with the target sequence. After co-transfection, a functional transactivator will recognize and bind to the target sequence, activating the transcription of reporter gene.

To validate a site-specific nuclease (e.g. TALEN or CRIPSR-Cas9), a surrogate reporter plasmid is constructed by disrupting the reporter gene ORF with an in-frame stop codon followed by the target sequence. A donor plasmid with a promoter-less wild type reporter gene ORF is also co-transfected. A functional site-specific nuclease will generate a double-strand break on the target sequence, stimulating homologous recombination between the surrogate reporter plasmid and donor plasmid. Thus the reporter gene ORF in the expression cassette is repaired, and up-regulation of reporter gene expression will be detected. (Figure 16)

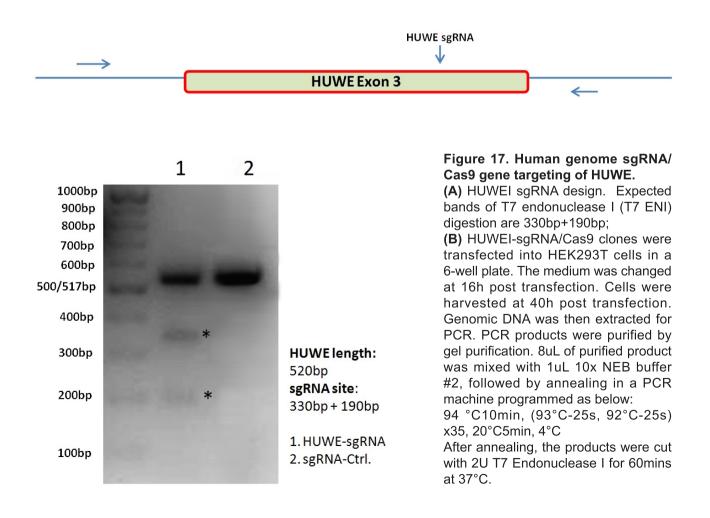


Donor plasmid\*\*

+

+

\*\*The donor plasmid contains a promoter-less wild type GLuc, which can replace the interrupted GLuc in the surrogate reporter plasmid and restore GLuc expression through homologous recombination, which


is enhanced by TALEN cleavage.

**Figure 16. TALENs enhance homologous recombination.** HEK293T cells in a 6-well plate were cotransfected with the eGFP-TALEN pair (1  $\mu$ g), the surrogate reporter plasmid (0.5  $\mu$ g) and the donor plasmid (0.5  $\mu$ g). 48hours post-transfection, the restored Gluc activity was determined to evaluate the TALEN function. Internal control SEAP activity was used for normalization.

#### **Chromosomal validation**

To validate a site-specific transactivator (e.g. TALE-TF) at the chromosomal level, qPCR primers are designed and qPCR performed post-transfection to measure the change in expression level of the target gene induced by the transactivator.

To validate a site-specific nuclease (e.g. TALEN or CRISPR-Cas9), we can use the mismatch cleavage assay to detect the presence of indels caused by NHEJ-mediated DSB repair at the specific target site of the chromosome. Genomic DNA is extracted and PCR amplified using primers specific to the target gene post-transfection. The PCR products are purified, denatured and reannealed, and then digested with a mismatch cleavage enzyme (e.g. T7 endonuclease I). The expected digestion product sizes will be detected if the site-specific nuclease is functional.



#### **Donor services**

GeneCopoeia offers customized donor clone design and construction services. Donor clones are customized plasmids designed to specifically transfer your gene of interest, selection marker or other genetic elements into a target site via HR-mediated repair of DSBs induced by site-specific genome editing tools. Donor vectors are available with several options for selection markers and genetic elements to meet your experimental needs.

#### **Donor Vector Types**

| Vector    | Promoter | Reporter Gene | Selection Marker |
|-----------|----------|---------------|------------------|
| pDonor-01 | EFa1     | copGFP        | Puromycin/TK     |
| pDonor-02 | CMV      | copGFP        | Neomycin/TK      |
| pDonor-03 | EFa1     | N/A           | Puromycin/TK     |
| pDonor-04 | CMV      | N/A           | Neomycin/TK      |

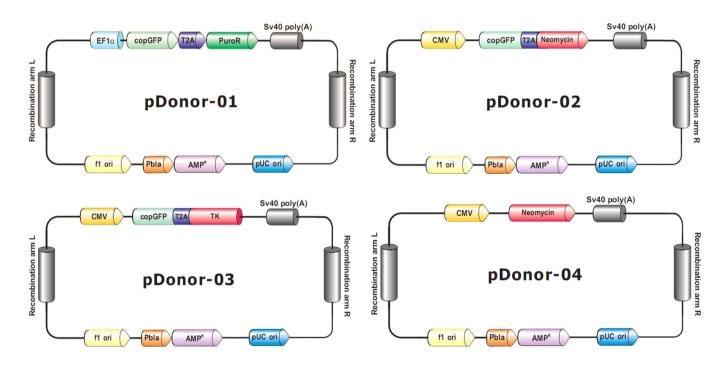
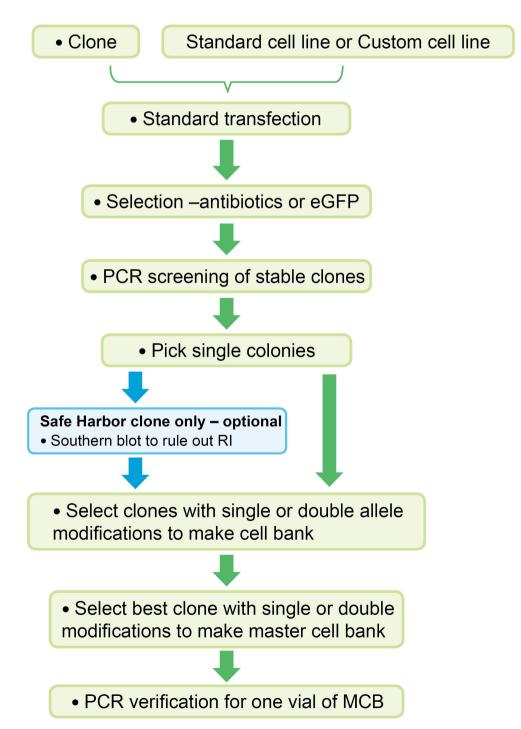




Figure 18. Maps of Donor vectors

#### Stable cell line services

GeneCopoeia offers monoclonal stable cell line service with customized TALEN- or CRISPR-Cas9mediated genome modifications. Cell banking service is also available.



#### **TALEN/CRISPR Stable Cell Line Development Services**

#### **Safe-harbor genome integration**

The modification of the human genome by insertion of genes of interest and other genetic elements in unique site(s) of chromosome(s) is of great value for cell engineering. However, random integration of the transgene can present a threat of unpredicted insertion or mutagenesis. The AAVS1 (also known as PPP1R2C locus) in human chromosome 19 is a well-validated "safe harbor" for hosting DNA fragments with expected function. It has an open chromatin structure and is transcription-competent. Most importantly, there are no known adverse effects on the cell resulting from the inserted DNA fragment of interest.

#### Safe-harbor gene knock-in kit

**The Genome-TALER™ human AAVS1 safe harbor gene knock-in kit** is designed to specifically transfer your gene of interest, selection marker or other genetic elements from a donor plasmid into the AAVS1 safe harbor site on human chromosome 19 via TALEN-mediated homologous recombination (HR) for long term, stable expression.

| Product name               | Description                                                                                                                               | Included in (Cat#)       |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| AAVS1 TALEN pair<br>clones | Create DSB at the AAVS1 locus on human<br>chromosome 19 to stimulate HR.                                                                  | SH-AVS-K100, SH-AVS-K000 |
| AAVS1 donor vector         | For cloning GOI to be knocked in. Contains two<br>AAVS1 flanking arms for HR as well as GFP and<br>puromycin for detection and selection. | SH-AVS-K100              |
| AAVS1 RFP control          | Positive control. Contains two AAVS1 flanking arms<br>for HR as well as RFP/GFP and puromycin for<br>detection and selection.             | SH-AVS-K100, SH-AVS-K000 |
| 5' HR primer pair          | PCR primer pair for detecting 5' recombination site at AAVS1 locus                                                                        | SH-AVS-K100, SH-AVS-K000 |
| 3' HR primer pair          | PCR primer pair for detecting 3' recombination site at AAVS1 locus                                                                        | SH-AVS-K100, SH-AVS-K000 |

#### Safe-harbor ORF knock-in clones

Human AAVS1 safe harbor ORF knock-in clones are a collection of more than 18,000 ORF knockin donor clones constructed for specially transferring the ORFs of customers' genes of interest from an AAVS1 donor plasmid to the AAVS1 site for safe integration and single copy gene expression. These clones are compatible with the Genome-TALER<sup>™</sup> human AAVS1 safe harbor gene knock-in kit, and gene transfer occurs via TALEN-mediated HR.

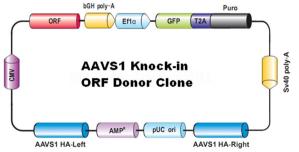
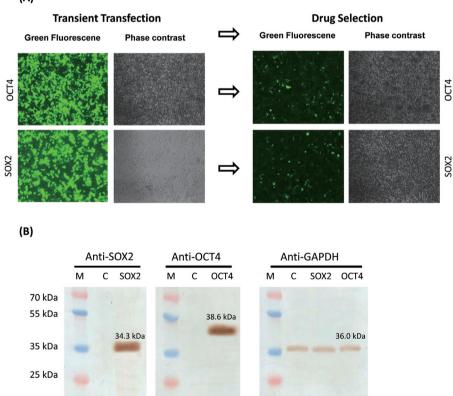



Figure19. Human AAVS1 safe harbor knockin clone


## Safe Harbor

## Knockin ORF clones by disease or gene families

| Disease Families                                   | ORF<br>cDNAs |
|----------------------------------------------------|--------------|
| Cardiovascular diseases                            | 1596         |
| Congenital anomalies and genetic diseases          | 3978         |
| Digestive system diseases                          | 864          |
| Diseases of the blood and blood-<br>forming organs | 1886         |
| Endocrine, metabolic and nutrition diseases        | 1784         |
| Immunologic diseases                               | 3644         |
| Infectious diseases                                | 3536         |
| Mental disorders                                   | 1805         |
| Musculoskeletal system diseases                    | 946          |
| Neoplasms                                          | 8950         |
| Nervous system and sense organs                    | 2404         |
| Respiratory system diseases                        | 565          |
| Urologic and genital diseases                      | 1304         |
| Skin and connective tissue diseases                | 866          |
| Symptoms and general pathology                     | 2022         |

| Gene Families                | ORF<br>cDNAs |
|------------------------------|--------------|
| Cytokines                    | 315          |
| Cytokine receptors           | 152          |
| Druggable target genes       | 6245         |
| G protein-coupled receptors  | 718          |
| Histone modification enzymes | 38           |
| Histone proteins             | 66           |
| Ion channels                 | 463          |
| Membrane-bound proteins      | 2138         |
| Nuclear hormone receptors    | 105          |
| Proteases                    | 625          |
| Protein kinases              | 933          |
| Protein phosphatases         | 293          |
| Surface antigens (CD)        | 263          |
| Transcription factors        | 1096         |
| Organelle markers            | 77           |
| Other kinases                | 201          |

(A)



**Figure 20:** (A) OCT4 or SOX2 ORF knockin clones were co-transfected with the AAVS1 TALEN Pair into HEK293T cells. Cells were subcultrured for 48 hr post-transfection and selected with puromycin (1µg/ml) for 2 weeks. The expression of CopGFP was detected using a microscope (Nikon Eclipse Ti) 48h post-transfection or after 2 weeks of drug selection. (B) Western blot analysis of proteins from HEK293T cells stably integrated with SOX2 or OCT4 at the AAVS1 site, with cells alone as negative control where endogenous Sox2 or OCT4 protein levels were too low to be detected in the same blot.

#### **References**

- 1. Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science. 2009 326(5959):1509-12
- 2. Christian, M. et al. Targeting DNA Double-Strand Breaks with TAL Effector Nucleases. DOI: 10.1534/ genetics.110.120717
- Morbitzera, R. et al. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. www.pnas.org/cgi/doi/10.1073/ pnas.1013133107
- Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research, 2011, Vol. 39, No. 12 e82 doi:10.1093/nar/ gkr218
- 5. Li, T. et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Research, 2011, Vol. 39, No. 14 6315–6325 doi:10.1093/nar/gkr188
- Zhang, F. et al. Programmable Sequence-Specific Transcriptional Regulation of Mammalian Genome Using Designer TAL Effectors. Nat Biotechnol. 2011 February ; 29(2): 149–153. doi:10.1038/nbt.1775.
- 7. Marraffini LA, Sontheimer EJ (February 2010). "CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea". Nat Rev Genet 11 (3): 181–190.
- 8. Hale CR, Zhao P, Olson S, et al. (November 2009). "RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex". Cell 139 (5): 945–56.
- 9. van der Oost J, Brouns SJ (November 2009). "RNAi: prokaryotes get in on the act". Cell 139 (5): 863–5. doi:10.1016/j.cell.2009.11.018.
- 10. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., and Charpentie E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptiv bacterial immunity. Science 337, 816–821.
- 11. Jiang, W., Bikard, D., Cox, D., Zhang, F., and Marraffini, L.A. (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat.Biotechnol. 31, 233–239.
- Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., Li, Y., Fine, E.J., Wu, X., Shalem, O., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. Published online July 21, 2013.
- 13. Zou, J. et al. 2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. 2009 Jul 2;5(1):97-110
- 14. Sadelain, M. et al. 2011. Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. 2011 Dec 1;12(1):51-8.
- 15. van Rensburg, R. et al. 2013. Chromatin structure of two genomic sites for targeted transgene integration in induced pluripotent stem cells and hepatopoietic stem cells. Gene Therapy. 2013 20(2):201-14.
- 16. Papapetrou, EP. et al. 2011. Genomic safe harbors permit high ß-globin transgene expression in thalassemia induced pluripotent stem cells. Nat. Biotechnol. 2011 29(1):73-8.
- 17. Lombardo, A. et al. 2011. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods. 2011 8(10):861-9.



#### **GeneCopoeia Headquarters**

9620 Medical Center Drive, Suite 101 Rockville, MD 20850, USA

| Email     | inquiry@genecopoeia.com |
|-----------|-------------------------|
| Tel       | +1 (301) 762-0888       |
| Toll free | +1 (866) 360-9531       |
| Fax       | +1 (301) 762-3888       |
| Website   | www.genecopoeia.com     |

### Fulengen Co., Ltd.

8F, Building D Guangzhou International Business Incubator Guangzhou Science Park Guangzhou, China 510663

| Email   | sales@fulengen.com |
|---------|--------------------|
| Tel     | +86 (20) 3205-2376 |
| Fax     | +86 (20) 3205-2877 |
| Website | www.fulengen.com   |

#### **Distributors**

| Australia   | United Bioresearch Products Pty Ltd                         | www.unitedbioresearch.com.au |
|-------------|-------------------------------------------------------------|------------------------------|
| Brazil      | Ambriex, S/A                                                | www.ambriex.com.br           |
| Japan       | Cosmo Bio Co., Ltd.                                         | www.cosmobio.co.jp           |
|             | Sanct Corporation                                           | www.proteogenesys.com        |
| Europe      | Source BioScience (Imagenes)                                | www.sourcebioscience.com     |
|             | LabOmics S.A.                                               | www.labomics.com             |
|             | THP Medical Products                                        | www.thp.at                   |
|             | tebu-bio                                                    | www.tebu-bio.com             |
| Israel      | Zotal Ltd.                                                  | www.zotal.co.il              |
| South Korea | Cosmo Genetech Co., Ltd.                                    | www.cosmogenetech.com        |
|             | SeouLin Bioscience Co., Ltd. (genome editing products only) | www.seoulin.co.kr            |
| Taiwan      | Integrated Bio Ltd.                                         | www.integrated-bio.com       |
| Singapore   | Chronos Scientific Pte Ltd.                                 | www.chronosci.com            |
| Malaysia    | Biomax Scientific                                           | www.biomaxsci.com            |

For Research Use Only.

Trademark: GeneCopoeia<sup>™</sup>, Genome-TALER<sup>™</sup>, Genome-TALER Engineer<sup>™</sup>, Genome-TALER Value<sup>™</sup>, Genome-TALER Project<sup>™</sup>, Genome-TALER Project<sup>™</sup>, Genome-TCRISP<sup>™</sup> (GeneCopoeia Inc.)

Copyright © 2014 GeneCopoeia, Inc.